A Partition Calculus in Set Theory

  • P. Erdös
  • R. Rado
Part of the Modern Birkhäuser Classics book series (MBC)


Dedekind’s pigeon-hole principle, also known as the box argument or the chest of drawers argument (Schubfachprinzip) can be described, rather vaguely, as follows. If sufficiently many objects are distributed over not too many classes, then at least one class contains many of these objects. In 1930 F. P. Ramsey [12] discovered a remarkable extension of this principle which, in its simplest form, can be stated as follows. Let S be the set of all positive integers and suppose that all unordered pairs of distinct elements of S are distributed over two classes.


Equivalence Relation Order Type Unordered Pair Partition Relation Require Contradiction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Bagemihl and H. D. Sprinkle, On a proposition of Sierpińiski, Proc. Amer. Math. Soc. vol. 5 (1954) pp. 726-728.Google Scholar
  2. 2.
    B. Dushnik and E. W. Miller, Partially ordered sets, Amer. J. Math. vol. 63 (1941) p. 605.CrossRefMathSciNetGoogle Scholar
  3. 3.
    P. Erdös, Some set-theoretical properties of graphs, Revista Universidad Nacional de Tucuman, Serie A vol. 3 (1942) pp. 363-367.MATHGoogle Scholar
  4. 4.
    P. Erdös and R. Rado, A combinatorial theorem, J. London Math. Soc. vol. 25 (1950) pp. 249-255.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    P. Erdös and R. Rado, Combinatorial theorems on classifications of subsets of a given set, Proc. London Math. Soc. (3) vol. 2 (1952) pp. 417-439.Google Scholar
  6. 6.
    P. Erdös and R. Rado, A problem on ordered sets, J. London Math. Soc. vol 28 (1953) pp. 426-438.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    P. Erdös and G. Szekeres, A combinatorial problem in geometry, Compositio Math. vol. 2 (1935) pp. 463-470.MATHMathSciNetGoogle Scholar
  8. 8.
    P. Hall, On representations of sub-sets, J. London Math. Soc. vol. 10 (1934) pp. 26-30.CrossRefGoogle Scholar
  9. 9.
    F. Hausdorff, Grundztige einer theorie der geordneten Mengen, Math. Ann. vol. 65 (1908) pp. 435-506.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    F. Hausdorff, Mengenlehre, 3d ed., 1944, §16.Google Scholar
  11. 11.
    R. Rado, Direct decompositions of partitions, J. London Math. Soc. vol. 29 (1954), pp. 71-83.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. (2) vol. 30 (1930) pp. 264-286.Google Scholar
  13. 13.
    W. Sierpińiski, Lemons sur les nombres transfinis, Paris, 1928.Google Scholar
  14. 14.
    W. Sierpińiski, Ojednom problemu G Ruzjevića koji se odnosi na hipotezu kontinuuma, Glas Srpske Kraljevske Akademije vol. 152 (1932) pp. 163-169.Google Scholar
  15. 15.
    W. Sierpińiski, Sur un probléme de la théorie des relations, Annali R. Scuola Normale Superiore de Pisa Ser. 2 vol. 2 (1933) pp. 285-287.Google Scholar
  16. 16.
    W. Sierpińiski, Concernant l’hypothèse du continu, Académie Royale Serbe. Bulletin de l’Académie des Sciences Mathématiques et Naturelles. A. Sciences Mathématiques et Physiques vol. 1 (1933) pp. 67-73.Google Scholar
  17. 17.
    A. Tarski, Quelques théorèmes sur les alephs, Fund. Math. vol. 7 (1925) p. 2.Google Scholar

Copyright information

© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • P. Erdös
    • 1
  • R. Rado
    • 2
  1. 1.Hebrew University of JerusalemJerusalemIsrael
  2. 2.University of RudingJerusalemIsrael

Personalised recommendations