Skip to main content

The Distribution of Primes and the Riemann Zeta Function

  • Chapter
Topics from the Theory of Numbers

Part of the book series: Modern Birkhäuser Classics ((MBC))

  • 542 Accesses

Abstract

We recall that the problem of the distribution of primes had been raised at least as far back as the Greek antiquity. The proof of our Theorem 3.9, that there are infinitely many primes, appears in Euclid (Book 9, Section 20), and Eratosthenes devised a systematic method for obtaining all primes up to any given number x.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. L. Ahlfors, Complex Analysis, 2nd ed. N.Y.: McGraw-Hill, 1966.

    MATH  Google Scholar 

  2. R. Apéry, Irrationalité de ζ(2) et ζ(3), Astérisque 61 (1979) 11–13.

    MATH  Google Scholar 

  3. See also A. van der Poorten, Mathem. Intelligencer 1 (1979) 195–207.

    Article  MATH  Google Scholar 

  4. T. M. Apostol, Mathematical Analysis, Reading, Mass.: Addison-Wesley, 1957.

    MATH  Google Scholar 

  5. R. J. Backlund, Sur les zéros de la fonction Ç(s) de Riemann, Comptes Rendus de l’Acad. Sci. (Paris) 158 (1914) 1979–1981.

    MATH  Google Scholar 

  6. M. B. Barban, Doklady Akademii Nauk UzSSr 8 (1961) 9–11.

    Google Scholar 

  7. R. P. Brent, Mathematics of Computation 33 (1979) 1361–1372.

    Article  MATH  MathSciNet  Google Scholar 

  8. V. Brun, Le crible d’Eratosthène et le théorème de Goldbach, Norske Videnskaps-selskapets Skrifter I, No. 3. Kristiana (Oslo), 1920.

    MATH  Google Scholar 

  9. V. Brun, La série \(\frac{1}{5} + \frac{1}{7} + \frac{1}{{11}} + \frac{1}{{13}} + \cdots\) est convergente ou finie, Bull, des Sciences Math. (2), 43 (1919) 100–104, 124–128.

    MATH  Google Scholar 

  10. Chen, Jing-run, On the representation of a large, even integer as the sum of a prime and the product of at most two primes, Sci. Sinica 16 (1973) 157–176.

    MATH  MathSciNet  Google Scholar 

  11. H. M. Edwards, Riemann’s Zeta Function. New York: Academic Press, 1974.

    MATH  Google Scholar 

  12. L. Euler, Institutiones Calculi Differentialis, Pt. 2, Chapters 5 and 6. St. Petersburg: Acad. Imper. Scient. Petropolitanae, 1755; Opera Omnia (1), vol. 10.

    Google Scholar 

  13. J. P. Gram, Note sur les zéros de la fonction ζ(s) de Riemann, Acta Math. 27 (1903) 289–304.

    Article  MATH  MathSciNet  Google Scholar 

  14. G. H. Hardy, Sur les zéros de la fonction ζ(s) de Riemann, Comptes Rendus de VAcad. des Sei. (Paris) 158 (1914) 1012–1014.

    MATH  Google Scholar 

  15. J. I. Hutchinson, On the zeros of Riemann zeta function, Transactions of the Amer. Math. Soc. 27 (1925) 49–60.

    Article  MATH  MathSciNet  Google Scholar 

  16. D. Jackson, Fourier series and Orthogonal Polynomials, Carus Monograph, No. 6. Menasha, Wise: G. Banta, 1941.

    Google Scholar 

  17. D. H. Lehmer, On the roots of the Riemann zeta function, Acta Mathem. 95 (1956) 291–298.

    Article  MATH  MathSciNet  Google Scholar 

  18. D. H. Lehmer, Extended computation of the Riemann zeta function, Mathematika 3 (1956) 102–108.

    Article  MATH  MathSciNet  Google Scholar 

  19. N. Levinson, More than a third of zeros of Riemann’s zeta function are on σ = 1/2, Advances in Mathematics 13 (1974) 383–436.

    Article  MATH  MathSciNet  Google Scholar 

  20. E. Meissel, Mathem. Annalen 2 (1870) 636–642;

    Article  MATH  MathSciNet  Google Scholar 

  21. E. Meissel, Mathem. Annalen 3 (1871) 523–525;

    Article  MATH  MathSciNet  Google Scholar 

  22. E. Meissel, Mathem. Annalen 25 (1885) 251–257.

    Article  MathSciNet  Google Scholar 

  23. M. Mikolás, Differentiation and integration of complex order..., Acta Mathematica Acad. Sci. Hungar. 10 (1959) 77–124.

    Article  MATH  Google Scholar 

  24. H. Rademacher, Beiträge zur Viggo Brunschen Methode in der Zahlentheorie, Abhandlungen aus dem Math. Seminar der Hamburger Univ. 3 (1924) 12–30.

    Article  MathSciNet  Google Scholar 

  25. A. Rényi, On the representation of even integers as sum of a prime and an almost prime, Izvestia Akad. Nauk SSSR, Ser. Mat. 12 (1948) 57–78;

    MATH  Google Scholar 

  26. A. Rényi, On the representation of even integers as sum of a prime and an almost prime, AMS Translation Series 2, vol. 19 (1962) 299–321.

    MATH  Google Scholar 

  27. B. Riemann, Collected Works of B. Riemann, edited by H. Weber, 2nd ed. (1892/1902). New York: Dover Publishing, 1953.

    Google Scholar 

  28. J. B. Rosser, J. M. Yohe, L. Schoenfeld, Information Processing, 1968. Proc. IFIP Congress Edinburgh, 1968, vol. 1, pp. 70–76. Amsterdam: North Holland, 1969.

    Google Scholar 

  29. A. Selberg, On the zeros of the Riemann zeta function on the critical line, Arch, for Math, og Naturv. 45 (1942) 101–114.

    MATH  MathSciNet  Google Scholar 

  30. A. Selberg, On an elementary method in the theory of primes, Norske Vid. Selsk. Forh. Trondheim, (No. 18) 19 (1947) 64–67.

    MATH  MathSciNet  Google Scholar 

  31. A. Selberg, The general sieve method...in prime number theory, Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1 (1950) 286–292.

    Google Scholar 

  32. E. C. Titchmarsh, The Theory of Functions, 2nd ed. Oxford: Clarendon Press, 1939.

    MATH  Google Scholar 

  33. E. C. Titchmarsh, The Theory of the Riemann Zeta Function. Oxford: Clarendon Press, 1951.

    MATH  Google Scholar 

  34. Wang Yuan, Several papers on the representation of large integers as a sum of a prime and an almost prime; in particular, Acta Math. Sinica 6 (1956) 565–582;

    MATH  MathSciNet  Google Scholar 

  35. Wang Yuan, Several papers on the representation of large integers as a sum of a prime and an almost prime; in particular, Acta Math. Sinica 10 (1960) 168–181;

    Google Scholar 

  36. Wang Yuan, Several papers on the representation of large integers as a sum of a prime and an almost prime; in particular, Sciencia Sinica 11 (1962) 1033–1054 (this is essentially an English translation of the previous paper, plus a most interesting Appendix).

    Google Scholar 

  37. D. V. Widder, Advanced Calculus, 2nd ed. Englewood Cliffs, N.J.: Prentice-Hall, 1961.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grosswald, E. (1984). The Distribution of Primes and the Riemann Zeta Function. In: Topics from the Theory of Numbers. Modern Birkhäuser Classics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-4838-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-4838-1_8

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-0-8176-4837-4

  • Online ISBN: 978-0-8176-4838-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics