Advertisement

The Distribution of Primes and the Riemann Zeta Function

  • Emil Grosswald
Part of the Modern Birkhäuser Classics book series (MBC)

Abstract

We recall that the problem of the distribution of primes had been raised at least as far back as the Greek antiquity. The proof of our Theorem 3.9, that there are infinitely many primes, appears in Euclid (Book 9, Section 20), and Eratosthenes devised a systematic method for obtaining all primes up to any given number x.

Keywords

Zeta Function Critical Line Riemann Zeta Function Riemann Hypothesis Integral Converge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    L. Ahlfors, Complex Analysis, 2nd ed. N.Y.: McGraw-Hill, 1966.MATHGoogle Scholar
  2. 2.
    R. Apéry, Irrationalité de ζ(2) et ζ(3), Astérisque 61 (1979) 11–13.MATHGoogle Scholar
  3. 2a.
    See also A. van der Poorten, Mathem. Intelligencer 1 (1979) 195–207.CrossRefMATHGoogle Scholar
  4. 3.
    T. M. Apostol, Mathematical Analysis, Reading, Mass.: Addison-Wesley, 1957.MATHGoogle Scholar
  5. 4.
    R. J. Backlund, Sur les zéros de la fonction Ç(s) de Riemann, Comptes Rendus de l’Acad. Sci. (Paris) 158 (1914) 1979–1981.MATHGoogle Scholar
  6. 5.
    M. B. Barban, Doklady Akademii Nauk UzSSr 8 (1961) 9–11.Google Scholar
  7. 6.
    R. P. Brent, Mathematics of Computation 33 (1979) 1361–1372.CrossRefMATHMathSciNetGoogle Scholar
  8. 7.
    V. Brun, Le crible d’Eratosthène et le théorème de Goldbach, Norske Videnskaps-selskapets Skrifter I, No. 3. Kristiana (Oslo), 1920.MATHGoogle Scholar
  9. 8.
    V. Brun, La série \(\frac{1}{5} + \frac{1}{7} + \frac{1}{{11}} + \frac{1}{{13}} + \cdots\) est convergente ou finie, Bull, des Sciences Math. (2), 43 (1919) 100–104, 124–128.MATHGoogle Scholar
  10. 9.
    Chen, Jing-run, On the representation of a large, even integer as the sum of a prime and the product of at most two primes, Sci. Sinica 16 (1973) 157–176.MATHMathSciNetGoogle Scholar
  11. 10.
    H. M. Edwards, Riemann’s Zeta Function. New York: Academic Press, 1974.MATHGoogle Scholar
  12. 11.
    L. Euler, Institutiones Calculi Differentialis, Pt. 2, Chapters 5 and 6. St. Petersburg: Acad. Imper. Scient. Petropolitanae, 1755; Opera Omnia (1), vol. 10.Google Scholar
  13. 12.
    J. P. Gram, Note sur les zéros de la fonction ζ(s) de Riemann, Acta Math. 27 (1903) 289–304.CrossRefMATHMathSciNetGoogle Scholar
  14. 13.
    G. H. Hardy, Sur les zéros de la fonction ζ(s) de Riemann, Comptes Rendus de VAcad. des Sei. (Paris) 158 (1914) 1012–1014.MATHGoogle Scholar
  15. 14.
    J. I. Hutchinson, On the zeros of Riemann zeta function, Transactions of the Amer. Math. Soc. 27 (1925) 49–60.CrossRefMATHMathSciNetGoogle Scholar
  16. 15.
    D. Jackson, Fourier series and Orthogonal Polynomials, Carus Monograph, No. 6. Menasha, Wise: G. Banta, 1941.Google Scholar
  17. 16.
    D. H. Lehmer, On the roots of the Riemann zeta function, Acta Mathem. 95 (1956) 291–298.CrossRefMATHMathSciNetGoogle Scholar
  18. 17.
    D. H. Lehmer, Extended computation of the Riemann zeta function, Mathematika 3 (1956) 102–108.CrossRefMATHMathSciNetGoogle Scholar
  19. 18.
    N. Levinson, More than a third of zeros of Riemann’s zeta function are on σ = 1/2, Advances in Mathematics 13 (1974) 383–436.CrossRefMATHMathSciNetGoogle Scholar
  20. 19.
    E. Meissel, Mathem. Annalen 2 (1870) 636–642;CrossRefMATHMathSciNetGoogle Scholar
  21. 19a.
    E. Meissel, Mathem. Annalen 3 (1871) 523–525;CrossRefMATHMathSciNetGoogle Scholar
  22. 19b.
    E. Meissel, Mathem. Annalen 25 (1885) 251–257.CrossRefMathSciNetGoogle Scholar
  23. 20.
    M. Mikolás, Differentiation and integration of complex order..., Acta Mathematica Acad. Sci. Hungar. 10 (1959) 77–124.CrossRefMATHGoogle Scholar
  24. 21.
    H. Rademacher, Beiträge zur Viggo Brunschen Methode in der Zahlentheorie, Abhandlungen aus dem Math. Seminar der Hamburger Univ. 3 (1924) 12–30.CrossRefMathSciNetGoogle Scholar
  25. 22.
    A. Rényi, On the representation of even integers as sum of a prime and an almost prime, Izvestia Akad. Nauk SSSR, Ser. Mat. 12 (1948) 57–78;MATHGoogle Scholar
  26. 22.
    A. Rényi, On the representation of even integers as sum of a prime and an almost prime, AMS Translation Series 2, vol. 19 (1962) 299–321.MATHGoogle Scholar
  27. 23.
    B. Riemann, Collected Works of B. Riemann, edited by H. Weber, 2nd ed. (1892/1902). New York: Dover Publishing, 1953.Google Scholar
  28. 24.
    J. B. Rosser, J. M. Yohe, L. Schoenfeld, Information Processing, 1968. Proc. IFIP Congress Edinburgh, 1968, vol. 1, pp. 70–76. Amsterdam: North Holland, 1969.Google Scholar
  29. 25.
    A. Selberg, On the zeros of the Riemann zeta function on the critical line, Arch, for Math, og Naturv. 45 (1942) 101–114.MATHMathSciNetGoogle Scholar
  30. 26.
    A. Selberg, On an elementary method in the theory of primes, Norske Vid. Selsk. Forh. Trondheim, (No. 18) 19 (1947) 64–67.MATHMathSciNetGoogle Scholar
  31. 27.
    A. Selberg, The general sieve method...in prime number theory, Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1 (1950) 286–292.Google Scholar
  32. 28.
    E. C. Titchmarsh, The Theory of Functions, 2nd ed. Oxford: Clarendon Press, 1939.MATHGoogle Scholar
  33. 29.
    E. C. Titchmarsh, The Theory of the Riemann Zeta Function. Oxford: Clarendon Press, 1951.MATHGoogle Scholar
  34. 30.
    Wang Yuan, Several papers on the representation of large integers as a sum of a prime and an almost prime; in particular, Acta Math. Sinica 6 (1956) 565–582;MATHMathSciNetGoogle Scholar
  35. 30a.
    Wang Yuan, Several papers on the representation of large integers as a sum of a prime and an almost prime; in particular, Acta Math. Sinica 10 (1960) 168–181;Google Scholar
  36. 30b.
    Wang Yuan, Several papers on the representation of large integers as a sum of a prime and an almost prime; in particular, Sciencia Sinica 11 (1962) 1033–1054 (this is essentially an English translation of the previous paper, plus a most interesting Appendix).Google Scholar
  37. 31.
    D. V. Widder, Advanced Calculus, 2nd ed. Englewood Cliffs, N.J.: Prentice-Hall, 1961.Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Emil Grosswald
    • 1
  1. 1.Department of MathematicsTemple UniversityPhiladelphiaUSA

Personalised recommendations