• Emil Grosswald
Part of the Modern Birkhäuser Classics book series (MBC)


We already met with the concept of “congruence” in Section 3.3. In this section we are going to explore it more systematically.


Equivalence Relation Diophantine Equation Residue Class Primitive Root Chinese Remainder Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. E. Dickson, History of the Theory of Numbers. New York: Chelsea, 1952.Google Scholar
  2. 2.
    C. F. Gauss, Disquisitiones Arith. (Translated from the second Latin edition, 1870, by A. Clark). New Haven: Yale Univ. Press, 1966, see Art. 24, p. 77.Google Scholar
  3. 3.
    W. J. LeVeque, Topics in Number Theory, Vol. 1. Reading, Mass.: Addison Wesley, 1956.Google Scholar
  4. 4.
    N. H. McCoy, The Theory of Numbers. New York: Macmillan, 1965.MATHGoogle Scholar
  5. 5.
    T. Nagell, Introduction to Number Theory. New York: Wiley, 1951.MATHGoogle Scholar
  6. 6.
    M. A. Stern, Lehrbuch der Algebraischen Analysis. Leipzig: Winter’sehe Verlagsbuchhandlung, 1860.Google Scholar
  7. 7.
    Sun Tsu, Suan-ching (arithmetic), edited by Y. Mikaini, Abhandlungen-Geschichte der Mathematischen Wissenschaften 30 (1912), 32.Google Scholar
  8. 8.
    B. L. Van der Waerden, Modern Algebra, Vol. 1. New York: Frederick Ungar, 1953.Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Emil Grosswald
    • 1
  1. 1.Department of MathematicsTemple UniversityPhiladelphiaUSA

Personalised recommendations