Fermat’s Equation

  • Emil Grosswald
Part of the Modern Birkhäuser Classics book series (MBC)


Of all Diophantine equations, by far the most famous is Fermat’s equation
$${x^n} + {y^n} = {z^n}$$


Diophantine Equation Principal Ideal Admissible Solution Euclidean Algorithm Rational Integer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Artin, Theory of Algebraic Numbers (Lectures) translated by G. Striker. Mathem. Institut Göttingen, 1959.MATHGoogle Scholar
  2. 2.
    A. L. Cauchy, Comptes Rendus Acad. Sciences (Paris) 24 (1847) 578–584.Google Scholar
  3. 3.
    L. E. Dickson, Quarterly Journal of Mathem. 40 (1908) 27–45.MATHGoogle Scholar
  4. 4.
    L. E. Dickson, History of the Theory of Numbers, vol. 2. New York: Chelsea, 1952.Google Scholar
  5. 5.
    G. L. Dirichlet, Mémoire read at the Royal Acad, of Sciences, Paris (Institut de France) on July 11, 1825, but not published until 1828 in the Journal für die reine und angew. Mathem. 3 (1828) 354–375; Werke 1, pp. 21–46.Google Scholar
  6. 6.
    H. M. Edwards, Fermâtes Last Theorem. New York: Springer, 1977.CrossRefGoogle Scholar
  7. 7.
    R. Fueter, Synthetische Zahlentheorie. Berlin: DeGruyter, 1925.MATHGoogle Scholar
  8. 8.
    P. Furtwängler, Sitzungsberichte Akad. Wiss. Wien 121 (1912) 589–592.MATHGoogle Scholar
  9. 9.
    E. Hecke, Theorie der algebraischen Zahlen. Leipzig: Akad. Verlagsgesellschaft, 1923f; New York: Chelsea, 1948.MATHGoogle Scholar
  10. 10.
    E. Hecke, Nachrichten der Akad. Wiss. Göttingen II, Mathem.-Physik. Klasse 1910, 420–424.Google Scholar
  11. 11.
    K. L. Jensen, Nyt Tidsskrift for Mathematik, Afdeling, B. 1915, 73–83.Google Scholar
  12. 12.
    E. Landau, Vorlesungen über Zahlentheorie, vol. 3. Leipzig: S. Hirzel, 1927.MATHGoogle Scholar
  13. 13.
    A. M. Legendre, Essai sur la Théorie des Nombres. Paris: Duprat, 1808 (Legendre gives credit for many results to Sophie Germain).Google Scholar
  14. 14.
    D. H. Lehmer and E. Lehmer, Bull. Amer. Math. Soc. 47 (1941) 139–142.CrossRefMathSciNetGoogle Scholar
  15. 15.
    G. Libri, Journal f. d. reine u. angw. Mathem.9 (1832) 270–275.Google Scholar
  16. 16.
    D. Mirimanoff, Comptes Rendus Ac. Sci. Paris 150 (1910) 204–206.MATHGoogle Scholar
  17. 17.
    D. Mirimanoff, L’Enseignement Mathématique 11 (1909) 49–51.MATHGoogle Scholar
  18. 18.
    D. Mirimanoff, Journal f. d. reine u. angw. Mathematik 139 (1911) 309–324.MATHGoogle Scholar
  19. 19.
    L. J. Mordell, Three Lectures on Fermâtes Last Theorem. Cambridge: The University Press, 1921.Google Scholar
  20. 20.
    H. Pollard, The Theory of Algebraic Numbers (Cams Monograph No. 9). New York: Wiley, 1950.MATHGoogle Scholar
  21. 21.
    P. Ribenboim, 13 Lectures on Fermat’s Last Theorem. New York: Springer, 1979.CrossRefMATHGoogle Scholar
  22. 22.
    J. B. Rosser, Bull. Amer. Math. Soc. 46 (1940) 299–304;CrossRefMathSciNetGoogle Scholar
  23. 22.
    J. B. Rosser, Bull. Amer. Math. Soc. 47 (1941) 109–110.CrossRefMathSciNetGoogle Scholar
  24. 23.
    H. S. Vandiver, Amer. Math. Monthly 53 (1946) 555–578; see also a large number of the papers quoted in this survey article.CrossRefMATHMathSciNetGoogle Scholar
  25. 24.
    S. S. Wagstaff, Mathem. Comput. 32 (1978) 583–591.MATHMathSciNetGoogle Scholar
  26. 25.
    H. Weber, Lehrbuch der Algebra, vol. 2. Braunschweig: F. Vieweg & Sohn, 1899.MATHGoogle Scholar
  27. 26.
    H. Weyl, Algebraic Theory of Numbers (Annals of Mathem. Studies, No. 1). Princeton, N.J.: Princeton University Press, 1940.Google Scholar
  28. 27.
    A. Wieferich, Journal f. d. reine u. angw. Mathem. 136 (1909) 293–302.MATHGoogle Scholar
  29. 28.
    P. Wolfskehl, Journal f. d. reine u. angw. Mathem. 99 (1886) 173–178.Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Emil Grosswald
    • 1
  1. 1.Department of MathematicsTemple UniversityPhiladelphiaUSA

Personalised recommendations