Advertisement

Diophantine Equations

  • Emil Grosswald
Part of the Modern Birkhäuser Classics book series (MBC)

Abstract

The following is the introductory section of the chapter on Diophantine Equations of the first edition of the present book. It was written about 20 years ago and is reproduced here in full:

“In Chapter 4 we considered linear congruences, or equivalently, linear Diophantine equations, and found that the questions one may be interested to ask generally have simple, straightforward answers. Therefore, it may come as something of a surprise to the reader that for nonlinear Diophantine equations hardly any general results were known even 40–50 years ago. Actually, even today we are reduced in most cases to studying individual equations rather than classes of equations, and one can hardly consider the results very satisfactory.

Keywords

Rational Point Double Point Diophantine Equation Riemann Hypothesis Rational Integer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    W. W. Adams and L. J. Goldstein, Introduction to Number Theory. Englewood Cliffs, N.J.: Prentice-Hall, 1976.MATHGoogle Scholar
  2. 2.
    P. Bachmann, Die Arithmetik von quadratischen Formen. Leipzig, 1898.Google Scholar
  3. 3.
    A. Baker, (a) Mathematika 13(1966) 204–216; ibid. 14(1967) 102–107, 220–228; 15(1968) 204–216.CrossRefMATHGoogle Scholar
  4. 3a.
    A. Baker, (b) Annals of Mathematics (2) 94(1971) 139–152.CrossRefMATHMathSciNetGoogle Scholar
  5. 4.
    A. Baker, Philosphical Transactions of the Royal Soc. of London, Ser. A 263(1968) 173–208.CrossRefMATHGoogle Scholar
  6. 5.
    P. T. Bateman, Transactions of the American Mathem. Soc. 71(1951) 70–101.CrossRefMATHMathSciNetGoogle Scholar
  7. 6.
    J. W. S. Cassels and M. J. T. Guy, Mathematika 13(1966) 111–120.CrossRefMATHMathSciNetGoogle Scholar
  8. 7.
    S. Chowla, The Riemann Hypothesis and Hilberths Tenth Problem. London: Blackie, 1965.Google Scholar
  9. 8.
    H. Davenport, Analytic Methods for Diophantine Equations and Di-ophantine Inequalities. University of Michigan, 1962; Ann Arbor, Mich.: Ann Arbor Publishers, 1963.Google Scholar
  10. 9.
    M. Davis, Amer. Mathem. Monthly 80(1973) 233–269.CrossRefMATHGoogle Scholar
  11. 10.
    M. Davis, Y. Matijasevic, and J. Robinson, Proc. Symposia in Pure Mathem., Amer. Mathem. Soc. 28(1976) 323–378.MathSciNetGoogle Scholar
  12. 11.
    M. Davis, H. Putnam, and J. Robinson, Annals of Math. 74(1961) 425–436.CrossRefMATHMathSciNetGoogle Scholar
  13. 12.
    M. Deuring, Inuentiones Mathem. 5(1968) 169–179.CrossRefMATHMathSciNetGoogle Scholar
  14. 13.
    C. F. Gauss, Disquisitiones Arithmeticae, Translated from the second Latin edition of 1870 by A. A. Clarke. New Haven Conn.: Yale Univ. Press, 1966.MATHGoogle Scholar
  15. 14.
    G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 3rd ed. Oxford: Clarendon Press, 1954.MATHGoogle Scholar
  16. 15.
    K. Heegner, Mathematische Zeitschrift 56(1952) 227–253.CrossRefMATHMathSciNetGoogle Scholar
  17. 16.
    E. Landau, Vorlesungen über Zahlentheorie. Leipzig: S. Hirzel, 1927.MATHGoogle Scholar
  18. 17.
    A. M. Legendre, Essai sur la Théorie des Nombres. Paris: Duprat, 1808. (Legendre gives credit for many results to Sophie Germaine.)Google Scholar
  19. 18.
    D. Lewis, Report on the Institute in the Theory of Numbers, Univ. of Colorado, Boulder, Colorado, 1959.Google Scholar
  20. 19.
    W. Ljunggren, Acta Arithmetica 8(1962/63) 451–463.MathSciNetGoogle Scholar
  21. 20.
    Y. Matijasevic, Doklady Akad. Nauk SSSR 19(1970) 279–282.MathSciNetGoogle Scholar
  22. 21.
    L. J. Mordell, Proc. Cambridge Philos. Soc, 21(1922) 179–192.Google Scholar
  23. 22.
    L. J. Mordell, Diophantine Equations. London: Academic Press, 1969.MATHGoogle Scholar
  24. 23.
    I. Niven and H. S. Zuckerman, The Theory of Numbers, 4th ed. New York: Wiley, 1980.MATHGoogle Scholar
  25. 24.
    O. T. O’Meara, Introduction to Quadratic Forms (Grundlehren der Math. Wiss, vol. 117). Berlin: Springer, 1963.CrossRefMATHGoogle Scholar
  26. 25.
    S. Ramanujan, Collected Papers, edited by G. H. Hardy, P. V. S. Aiyar, and B. M. Wilson. Cambridge: Cambridge University Press, 1927.Google Scholar
  27. 26.
    K. F. Roth, Mathematika 2(1955) 1–20; corrigendum p. 168.CrossRefMATHMathSciNetGoogle Scholar
  28. 27.
    C. L. Siegel, Abhandlungen Preuss. Akad. Wiss.—Phys.-Mathem. Klasse (1929) No. 1, Ges. Abh. vol. 1, pp. 209–266, Springer 1966.Google Scholar
  29. 28.
    C. L. Siegel, Inventiones Mathematicae 5(1968) 180–191;CrossRefMATHMathSciNetGoogle Scholar
  30. 28.
    C. L. Siegel, Ges. Abh. vol. 4, pp. 41–52, Springer 1979.Google Scholar
  31. 29.
    T. Skolem, Diophantische Gleichungen (Ergebnisse der Mathem. u.i. Grenzgebiete, vol. 5). Berlin: Springer, 1938.MATHGoogle Scholar
  32. 30.
    H. Stark, (a) Michigan Mathem. Journal 14(1967) 1–27.CrossRefMATHGoogle Scholar
  33. 30.
    H. Stark, (b) Mathem. of Computation 29(1975) 289–302.MATHGoogle Scholar
  34. 31.
    R. Tijdeman, Acta Arithmetica 29(1976) 197–208.MathSciNetGoogle Scholar
  35. 32.
    A. Weil, (a) Acta Mathematica 52(1928) 281–315; also Collected Works, vol. 1, pp. 11–45.CrossRefMathSciNetGoogle Scholar
  36. 32.
    A. Weil, (b) Bull. Sc. Mathem. (II) 54(1929) 182–191; also Collected Works, vol. 1, pp. 47–56.Google Scholar
  37. 33.
    A. Weil, Bull. Amer. Math. Soc. 55(1949) 497–508;CrossRefMATHMathSciNetGoogle Scholar
  38. 33.
    A. Weil, Coll. Works, vol. 1, pp. 399–410.Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Emil Grosswald
    • 1
  1. 1.Department of MathematicsTemple UniversityPhiladelphiaUSA

Personalised recommendations