Differentiable Operads, the Kuranishi Correspondence, and Foundations of Topological Field Theories Based on Pseudo-Holomorphic Curves

Part of the Progress in Mathematics book series (PM, volume 279)


In this article the author describes a general framework to establish foundation of various topological field theories. By taking the case of Lagrangian Floer theory as an example, we explain it in a way so that it is applicable to many similar situations including, for example, the case of ‘symplectic field theory’. The results of this article is not really new in the sense that its proof was already written in (33), in detail. However several statements are formulated here, for the first time. Especially the relation to the theory of operad is clarified.


Modulus Space String Topology Loop Space Morse Function Lagrangian Submanifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Adams Infinite Loop Space Annals of Mathematics Studies 90 Princeton Univ. Press Princeton (1978).Google Scholar
  2. [2]
    M.F. Atiyah Topological quantum field theories Publ. IHES 68 (1989) 175–186.Google Scholar
  3. [3]
    V. Arnold and A. Givental Symplectic Geometry Encyclopedia of Math. Sci., Dynamical System V, ed. V. Arnold and S. Novikov Springer Berlin (1980) 4–136.Google Scholar
  4. [4]
    D. Austin and P. Braam Morse-Bott theory and equivariant cohomology The Floer Memorial Volume, Progr. Math. 133 ed. H. Hofer, C. Taubes, A. Weinstein and E. Zehnder, Birkhäuser Basel (1995) 123–183.Google Scholar
  5. [5]
    S. Barannikov Batalin-Vilkovisky geometry of Gromov-Witten invariants Talk at ESI Workshop on Homological Mirror Symmetry (2006).Google Scholar
  6. [6]
    M. Betz and R. Cohen Graph moduli spaces and cohomology operations Turkish J. Math. 18 (1994) 23–41.MATHMathSciNetGoogle Scholar
  7. [7]
    J. M. Boardman and R. M. Vogt Homotopy Invariant Algebraic Structures on Toplogical Spaces Lecture Notes in Math. 347 (1973) Springer-Verlag.Google Scholar
  8. [8]
    R. Bott Nondegenerate critical manifolds Ann. of Math. 60 (1954) 248–261.Google Scholar
  9. [9]
    L. Buhovsky Multiplicative structures in lagrangian Floer homology Preprint. (2006).Google Scholar
  10. [10]
    T. Coates and A. Givental Quantum Riemann - Roch, Lefschetz and Serre math.AG/0110142.Google Scholar
  11. [11]
    K. Costello Topological conformal field theories and Calabi-Yau categories math.QA/0412149.Google Scholar
  12. [12]
    M. Chas and D. Sullivan String topology math.GT/9911159, (1999).Google Scholar
  13. [13]
    C.-H. Cho Holomorphic discs, spin structures and Floer cohomology of the Clifford tori Internat. Math. Res. Notices (2004) 35 1803–1843.CrossRefGoogle Scholar
  14. [14]
    C.-H. Cho Products of Floer cohomology of torus fibers in toric Fano manifolds Commun. Math. Phys. 260 (2005) 613–640, math.SG/0412414MATHCrossRefGoogle Scholar
  15. [15]
    C.-H. Cho and Y.-G.Oh Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds Asian J. Math. 10 (2006) 773 - 814.MATHMathSciNetGoogle Scholar
  16. [16]
    K. Cieliebak and J. Latschev Symplectic field theory and string topology. working draft (2006).Google Scholar
  17. [17]
    S. Donaldson An application of gauge theory to the topoology of 4-manifolds J. Differential Geom. 18 (1983) 269 - 316.MATHMathSciNetGoogle Scholar
  18. [18]
    Y. Eliashberg, A. Givental and H. Hofer Introduction to symplectic field theory Geom. and Func. Analysis special volume (2000) 560–673.Google Scholar
  19. [19]
    A. Floer Morse theory for Lagrangian intersections J. Differential Geom. 28 (1988) 513–547.MATHMathSciNetGoogle Scholar
  20. [20]
    K. Fukaya Morse homotopy, A -categories, and Floer homologies Proc. of the 1993 Garc Workshop on Geometry and Topology ed. H. J. Kim, Lecture Notes series 18, Seoul Nat. Univ. Seoul (1993) 1–102 (http://www.math.kyoto-u.ac.jp/~fukaya/fukaya.html).
  21. [21]
    K. Fukaya Topological field theory and Morse theory [translation of Sūgaku 46 (1994), 289–307] Sugaku Expositions 10 (1997) 19–39.Google Scholar
  22. [22]
    K. Fukaya Floer homology of connected sum of homology 3-spheres Topology 35 (1996) 89–136.MATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    K. Fukaya Morse homotopy and its quantization Geometry and Topology ed. W. Kazez, International Press (1997) 409–441.Google Scholar
  24. [24]
    K. Fukaya Floer homology for 3-manifolds with boundary I. Never to appear: (http://www.math.kyoto-u.ac.jp/~fukaya/fukaya.html) (1997).
  25. [25]
    K. Fukaya Floer homology for families—a progress report Integrable Systems, Topology, and Physics (Tokyo, 2000) Comtemp. Math. 309 (2002) 33–68.Google Scholar
  26. [26]
    K. Fukaya Floer homology and mirror symmetry. II Minimal Surfaces, Geometric Analysis and Symplectic Geometry (Baltimore, MD, 1999) Adv. Stud. Pure Math. 34 (2002) 31–127.Google Scholar
  27. [27]
    K. Fukaya Mirror symmetry of abelian varieties and multi-theta functions J. Algebraic Geom. 11 (2002) 393–512.MATHMathSciNetGoogle Scholar
  28. [28]
    K. Fukaya Deformation theory, homological algebra and mirror symmetry Geometry and Physics of Branes (Como, 2001) Ser. High Energy Phys. Cosmol. Gravit. IOP (2003) Bristol 121–209.Google Scholar
  29. [29]
    K. Fukaya Application of Floer homology of Lagrangian submanifolds to symplectic topology Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology, NATO Science Series II: Mathematics, Physics and Chemistry, 217 (2005) 231–276.CrossRefMathSciNetGoogle Scholar
  30. [30]
    K. Fukaya, and K. Ono Arnold conjecture and Gromov-Witten invariant, Topology 38 (1999) 933–1048.MATHCrossRefMathSciNetGoogle Scholar
  31. [31]
    K. Fukaya and Y.-G. Oh Zero-loop open strings in the cotangent bundle and Morse homotopy Asian J. Math 1 (1997) 99–180.MathSciNetGoogle Scholar
  32. [32]
    K. Fukaya, Y.-G. Oh, H. Ohta and K. Ono Lagrangian intersection Floer theory : anomaly and obstructions, Preprint (2000), http://www.kusm.kyoto-u.ac.jp/%7Efukaya/fukaya.html.
  33. [33]
    K. Fukaya, Y.-G. Oh, H. Ohta and K. Ono Lagrangian intersection Floer theory : anomaly and obstructions, Preprint (2006) AMS/IP studies in Advanced Mathematics 46, Amer. Math. Soc./International Press, 2009.Google Scholar
  34. [34]
    K. Fukaya, Y.-G. Oh, H. Ohta and K. Ono Supplement to the 2006 preprint version of (33), Preprint (2007).Google Scholar
  35. [35]
    P. Griffiths and J. W. Morgan Rational Homotopy Theory and Differential Forms Progress in Math. 16 Birkhäuser Basel (1981).Google Scholar
  36. [36]
    M. Gromov Pseudoholomorphic curves in symplectic geometry Invent. Math. 82 (1985) 307–347.MATHMathSciNetGoogle Scholar
  37. [37]
    F. Hirzebruch Topological methods in Algebraic geometry Springer (1956)Google Scholar
  38. [38]
    H. Hofer and D. Salamon Floer homology and Novikov rings The Floer Memorial Volume Progr. Math., 133 H. Hofer, C. Taubes, A. Weinstein and E. Zehnder, Birkhäuser Basel (1995) 483–524Google Scholar
  39. [39]
    M. Hutchings Floer homology of families I math.SG/0308115. Algebra of Topol. 8(2008), 435–492.Google Scholar
  40. [40]
    T. Kimura, A. Voronov, and G. Zuckerman Homotopy Gerstenhaber algebra and topological field theory Contemporary Math. 202 (1997) 305–333.Google Scholar
  41. [41]
    N. Iwase On the ring structure of K (XP n ). Master thesis, Kyushu Univ. (1983) (in Japanese).Google Scholar
  42. [42]
    T.V. Kadeišvili The algebraic structure on the homology of an A -algebra Soobshch. Akad. Nauk Gruzin. SSR 108 (1982) 249–252 (in Russian).Google Scholar
  43. [43]
    M. Kontsevich Feynman diagrams and low-dimensional topology Proc. of the first European Congr. Math. I (1994) 97–122.Google Scholar
  44. [44]
    M. Kontsevich Enumeration of rational curves via by torus actions Moduli Space of Surface ed. by H. Dijkgraaf, C. Faber and G.v.d. Geer Birkhäuser Basel (1995) 335–368.Google Scholar
  45. [45]
    M. Kontsevich and Y. Soibelman Homological mirror symmetry and torus fibrations Symplectic Geometry and Mirror Symmetry ed. K. Fukaya, Y.-G. Oh, K. Ono and G. Tian, World Sci. Publishing River Edge (2001) 203–263.Google Scholar
  46. [46]
    K. Lefèvre-Hasegawa Sur les A catégories Thése Doctorat Universite Paris 7 (2003).Google Scholar
  47. [47]
    J. Li and G. Tian Virtual moduli cycles and Gromov-Witten invariants of general symplectic manifolds Topics in Symplectic 4-Manifolds (Irvine, CA, 1996). First Int. Press Lect. Ser. 1 Internat. Press Cambridge, MA, USA (1998) 47–83.Google Scholar
  48. [48]
    V. Lyubashenko Category of A -categories math.CT/0210047.Google Scholar
  49. [49]
    M. Markl, S. Shnider and J. Stasheff, Operads in Algebra, Topology and Physics Math. Surveys and Monographs 96 Amer. Math. Soc. (2002).Google Scholar
  50. [50]
    J.P. May The geometry of iterated loop spaces Lecture note in Math. 271 Springer-Verlag, New-York (1972).Google Scholar
  51. [51]
    J.E. McClure On the chain-level intersection pairing for PL manifolds Preprint (2004) math.QA/0410450.Google Scholar
  52. [52]
    S. Novikov Multivalued functions and functional - an analogue of the Morse theory Sov. Math. Dokl. 24 (1981) 222–225MATHGoogle Scholar
  53. [53]
    H. Nakajima Lectures on Hilbert schemes of points on surfaces University Lecture Series, 18, American Mathematical Society, Providence, RI, (1999).Google Scholar
  54. [54]
    H. Nakajima 22nd century geometry suggested by string theory: generating space Suugaku seminar (1997) (in Japanese).Google Scholar
  55. [55]
    Y.-G. Oh Floer cohomology of Lagrangian intersections and pseudo- holomorphic disks I, & II Comm. Pure and Appl. Math. 46 (1993) 949–994 & 995–1012.Google Scholar
  56. [56]
    Y.-G. Oh Relative Floer and quantum cohomology and the symplectic topology of Lagrangian submanifolds Contact and Symplectic Geometry ed. C. B. Thomas, Cambridge Univ. Press, Cambridge UK (1996) 201–267.Google Scholar
  57. [57]
    H. Ohta Obstruction to and deformation of Lagrangian intersection Floer cohomology Symplectic Geometry and Mirror Symmetry (Seoul, 2000) 281–310.Google Scholar
  58. [58]
    K. Ono On the Arnold conjecture for weakly monotone symplectic manifolds Invent. Math. 119 (1995) 519–537.Google Scholar
  59. [59]
    Y. Ruan Virtual neighborhood and pseudoholomorphic curve Turkish J. Math. (1999) 161–231.Google Scholar
  60. [60]
    M. Schwarz Morse homology Progress in Mathematics, 111 Birkhäuser Verlag, Basel (1993).Google Scholar
  61. [61]
    P. Seidel Fukaya categories and Picard-Lefschetz theory Preprint, to appear in the ETH Lecture Notes series of the European Math. Soc. (2006).Google Scholar
  62. [62]
    B. Siebert Gromov-Witten invariants for general symplectic manifolds dg-ga /9608005.Google Scholar
  63. [63]
    V. de Silva Products on symplectic Floer homology Thesis, Oxford Uinv. (1997).Google Scholar
  64. [64]
    V.A. Smirnov Simplicial and Operad Methods in Algebraic Topology (Translated from the Russian manuscript by G. L. Rybnikov) Translations of Mathematical Monographs, 198 American Mathematical Society, Providence (2000).Google Scholar
  65. [65]
    J. Stasheff Homotopy associativity of H-spaces I, II Trans. Amer. Math. Soc. 108 (1963) 275–312.CrossRefMathSciNetGoogle Scholar
  66. [66]
    J. Stasheff Higher homotopy algebra: string field theory and Drinfeld’s quasi Hopf algebra, Proc. of XXth International Conference on Diff. Geometric method in Theoretical Physics (New York 1991) 1 (1992) 408 – 425.Google Scholar
  67. [67]
    K. Strebel Quadratic Differentials Springer (1984).Google Scholar
  68. [68]
    M. Sugawara A condition that a space is group-like J. Okayama Univ. 7 (1957) 123–149.MATHMathSciNetGoogle Scholar
  69. [69]
    D. Sullivan Infinitesimal computations in topology Publ. Math. IHES 74 (1978) 269–331.Google Scholar
  70. [70]
    A. Voronov The master equation of open-closed sigma-model Talk at Stringy Topology in Morelia (2006).Google Scholar
  71. [71]
    S. Wilson On the algebra and geometry of manifolds chains and cochains Thesis, SUNY Stony Brook (2005).Google Scholar
  72. [72]
    E. Witten Noncommutative geometry and string field theory Nuclear Phys. B 268 (1986) 253–294.MathSciNetGoogle Scholar
  73. [73]
    E. Witten Topological quantum field theory Comm. Math. Phys., 118 (1988) 411–449.MATHCrossRefMathSciNetGoogle Scholar
  74. [74]
    B. Zwiebach Quantum open string theory with manifest closed string factorization Phys. Lett. B256 (1991) 22–29.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of MathematicsKyoto University, KitashirakawaSakyo-kuJapan

Personalised recommendations