Towards Quantum Cohomology of Real Varieties

Part of the Progress in Mathematics book series (PM, volume 279)


This chapter is devoted to a discussion of Gromov–Witten–Welschinger (GWW) classes and their applications. In particular, Horava’s definition of quantum cohomology of real algebraic varieties is revisited by using GWW classes and is introduced as a differential graded operad. In light of this definition, we speculate about mirror symmetry for real varieties.


Modulus Space Real Variety Genus Zero Quantum Cohomology Graph Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Bredon, Equivariant Cohomology Theories. Lecture Notes in Mathematics 34, Springer Verlag, Berlin, 1967.Google Scholar
  2. [2]
    Ö. Ceyhan, On moduli of pointed real curves of genus zero. Proceedings 13th Gokova Geometry Topology Conference 2006, 1–38.Google Scholar
  3. [3]
    Ö. Ceyhan, On moduli of pointed real curves of genus zero. Ph.D. Thesis. IRMA Preprints. Ref: 06019.Google Scholar
  4. [4]
    Ö. Ceyhan, The graph homology of the moduli space of pointed real curves of genus zero. Selecta Math. 13 (2007), no. 2, 203–237.Google Scholar
  5. [5]
    Ö. Ceyhan, On Solomon’s reconstruction theorem for Gromov-Witten-Welshinger classes. in preperation.Google Scholar
  6. [6]
    M. Davis, T. Januszkiewicz, R. Scott, Fundamental groups of blow-ups. Adv. Math. 177 (2003), no. 1, 115–179.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    A. Degtyarev, I. Itenberg, V. Kharlamov, Real enriques surfaces, Lecture Notes in Mathmetics 1746, Springer-Verlag, Berlin, 2000. xvi+259 pp.Google Scholar
  8. [8]
    S.L. Devadoss, Tessellations of moduli spaces and the mosaic operad. in ‘Homotopy invariant algebraic structures’ (Baltimore, MD, 1998), 91–114, Contemp. Math., 239, Amer. Math. Soc., Providence, RI, 1999.Google Scholar
  9. [9]
    I. Dolgachev, Topics in Classical Algebraic Geometry. Part I. lecture notes, available authors webpage
  10. [10]
    P. Etingof, A. Henriques, J. Kamnitzer, E. Rains, The cohomology ring of the real locus of the moduli space of stable curves of genus 0 with marked points. preprint math.AT/0507514.Google Scholar
  11. [11]
    K. Fukaya, Y.G. Oh, H. Ohta, K. Ono, Lagrangian intersection Floer theory: anomaly and obstruction. preprint 2000.Google Scholar
  12. [12]
    P. Griffiths, J. Harris, Principles of algebraic geometry. Pure and Applied Mathematics. Wiley-Interscience [John Wiley and Sons], New York, (1978). xii+813 pp.Google Scholar
  13. [13]
    A.B. Goncharov, Yu.I. Manin, Multiple ζ-motives and moduli spaces \({\overline{M}}_{0,n}(\mathbb{C})\). Compos. Math. 140 (2004), no. 1, 1–14.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    J. Harris, I. Morrison, Moduli of curves. Graduate Texts in Mathematics vol 187, Springer-Verlag, NewYork, (1998), 366 pp.Google Scholar
  15. [15]
    A. Henriques, J. Kamnitzer, Crystals and coboundary categories. Duke Math. J. 132 (2006), no. 2, 191–216.MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    P. Horava, Equivariant topological sigma models. Nuclear Phys. B 418 (1994), no. 3, 571–602.MATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    I. Itenberg, V. Kharlamov, E. Shustin, A Caporaso-Harris type formula for Welschinger invariants of real toric Del Pezzo surfaces. preprint math/0608549.Google Scholar
  18. [18]
    H. Kajiura, J. Stasheff, Jim Homotopy algebras inspired by classical open-closed string field theory. Comm. Math. Phys. 263 (2006), no. 3, 553–581.MATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    H. Kajiura, J. Stasheff, Open-closed homotopy algebra in mathematical physics. J. Math. Phys. 47 (2006), no. 2, 023506, 28 pp.Google Scholar
  20. [20]
    H. Kajiura, J. Stasheff, Homotopy algebra of open-closed strings. hep-th/ 0606283.Google Scholar
  21. [21]
    M. Kapranov, The permutoassociahedron, MacLane’s coherence theorem and asymptotic zones for KZ equation. J. Pure Appl. Algebra 85 (1993), no. 2, 119–142.MATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    S. Keel, Intersection theory of moduli space of stable N-pointed curves of genus zero, Trans. Amer. Math. Soc. 330 (1992), no. 2, 545–574.MATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    M. Kontsevich, it Homological algebra of mirror symmetry. Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), 120–139, Birkhäuser, Basel, 1995.Google Scholar
  24. [24]
    M. Kontsevich, Yu.- I. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry. Comm. Math. Phys. 164 (1994), no. 3, 525–562.Google Scholar
  25. [25]
    M. Kontsevich, Yu.-I. Manin (with appendix by R. Kaufmann), Quantum cohomology of a product. Invent. Math. 124 (1996), no. 1–3, 313–339.Google Scholar
  26. [26]
    F.F. Knudsen, The projectivity of the moduli space of stable curves. II. The stacks M g,n. Math. Scand. 52 (1983), no. 2, 161–199.Google Scholar
  27. [27]
    C.C.M. Liu, Moduli J-holomorphic curves with Lagrangian boundary conditions and open Gromov-Witten invariants for an S 1 -equivariant pair. preprint math.SG/0210257.Google Scholar
  28. [28]
    Yu.-I. Manin, Frobenius manifolds, quantum cohomology and moduli spaces. AMS Colloquium Publications vol 47, Providence, RI, (1999), 303 pp.Google Scholar
  29. [29]
    Yu.-I. Manin, Gauge Field Theories and Complex Geometry. Grundlehren der Mathematischen Wissenschaften 289, Springer-Verlag, Berlin, (1997), 346 pp.Google Scholar
  30. [30]
    S. A. Merkulov, Operad of formal homogeneous spaces and Bernoulli numbers. math/0708.0891.Google Scholar
  31. [31]
    G. Mikhalkin, Counting curves via lattice paths in polygons. C. R. Math. Acad. Sci. Paris 336 (2003), no. 8, 629–634.MATHMathSciNetGoogle Scholar
  32. [32]
    G. Mikhalkin, Enumerative tropical algebraic geometry in ℝ 2. J. Amer. Math. Soc. 18 (2005), no. 2, 313–377.MATHCrossRefMathSciNetGoogle Scholar
  33. [33]
    R. Pandharipande, J. Solomon, J. Walcher, Disk enumeration on the quintic 3-fold. math.SG/0610901.Google Scholar
  34. [34]
    Z. Ran, Lie Atoms and their deformation theory. math/0412204.Google Scholar
  35. [35]
    Z. Ran, Bernoulli numbers and deformations of schemes and maps. math/ 0609223.Google Scholar
  36. [36]
    J. Solomon, Intersection theory on the moduli space of holomorphic curves with Lagrangian boundary conditions. math.SG/0606429.Google Scholar
  37. [37]
    J. Solomon, A differential equation for the open Gromov-Witten potential. a talk given at Real, tropical, and complex enumerative geometry workshop at CRM-Montreal.Google Scholar
  38. [38]
    A. Voronov, The Swiss-cheese operad. Homotopy invariant algebraic structures (Baltimore, MD, 1998), 365–373, Contemp. Math., 239, Amer. Math. Soc., Providence, RI, 1999.Google Scholar
  39. [39]
    J.Y. Welschinger, Invariants of real symplectic 4-manifolds and lower bounds in real enumerative geometry. Invent. Math. 162 (2005), no. 1, 195–234. *Google Scholar
  40. [40]
    J.Y. Welschinger, Spinor states of real rational curves in real algebraic convex 3-manifolds and enumerative invariants. Duke Math. J. 127 (2005), no. 1, 89–121.MATHCrossRefMathSciNetGoogle Scholar
  41. [41]
    J.Y. Welschinger, Invariants of real symplectic four-manifolds out of reducible and cuspidal curves. Bull. Soc. Math. France 134 (2006), no. 2, 287–325.MATHMathSciNetGoogle Scholar
  42. [42]
    J.Y. Welschinger, Towards relative invariants of real symplectic four-manifolds. Geom. Funct. Anal. 16 (2006), no. 5, 1157–1182.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Max-Planck-Institute for MathematicsBonnGermany

Personalised recommendations