Skip to main content

Optimal Experimental Designs

  • Chapter
  • First Online:
The Art of Progressive Censoring

Part of the book series: Statistics for Industry and Technology ((SIT))

  • 1671 Accesses

Abstract

The problem of an optimal censoring plan in progressive Type-II censoring is discussed for several criteria including minimum experimental time, maximum Fisher information, minimum variance of estimates, as well as further criteria proposed in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abo-Eleneen ZA (2007) Fisher information and optimal schemes in progressive Type-II censored samples. Model Assist Stat Appl 2:153–163

    MATH  MathSciNet  Google Scholar 

  2. Abo-Eleneen ZA (2008) Fisher information in type II progressive censored samples. Comm Stat Theory Meth 37:682–691

    Article  MATH  MathSciNet  Google Scholar 

  3. Abo-Eleneen ZA (2012) A novel approach for optimal schemes in progressive censoring plans. J Comm Comput 9:426–433

    Google Scholar 

  4. Ali MM, Umbach D (1998) Optimal linear inference using selected order statistics in location-scale models. In: Balakrishnan N, Rao CR (eds) Order statistics: applications. Handbook of statistics, vol 17. Elsevier, Amsterdam, pp 183–213

    Google Scholar 

  5. Balakrishnan N (2007b) Progressive censoring methodology: an appraisal (with discussions). TEST 16:211–296

    Article  MATH  MathSciNet  Google Scholar 

  6. Balakrishnan N, Aggarwala R (2000) Progressive censoring: theory, methods, and applications. Birkhäuser, Boston

    Book  Google Scholar 

  7. Balakrishnan N, Han D (2007) Optimal progressive Type-II censoring schemes for non-parametric confidence intervals of quantiles. Comm Stat Simul Comput 36:1247–1262

    Article  MATH  MathSciNet  Google Scholar 

  8. Balakrishnan N, Burkschat M, Cramer E, Hofmann G (2008b) Fisher information based progressive censoring plans. Comput Stat Data Anal 53:366–380

    Article  MATH  MathSciNet  Google Scholar 

  9. Block HW, Joe H (1997) Tail behaviour of the failure rate functions of mixtures. Lifetime Data Anal 3:269–288

    Article  MATH  Google Scholar 

  10. Burkschat M (2008a) On optimal linear equivariant estimation under progressive censoring. Statistics 42:383–392

    Article  MATH  MathSciNet  Google Scholar 

  11. Burkschat M (2008b) On optimality of extremal schemes in progressive Type-II censoring. J Stat Plan Infer 138:1647–1659

    Article  MATH  MathSciNet  Google Scholar 

  12. Burkschat M, Cramer E, Kamps U (2006) On optimal schemes in progressive censoring. Stat Probab Lett 76:1032–1036

    Article  MATH  MathSciNet  Google Scholar 

  13. Burkschat M, Cramer E, Kamps U (2007b) Optimality criteria and optimal schemes in progressive censoring. Comm Stat Theory Meth 36:1419–1431

    Article  MATH  MathSciNet  Google Scholar 

  14. Chan LK, Chan NN (1973) On the optimum best linear unbiased estimates of the parameters of the normal distribution based on selected order statistics. Scand Actuar J 1973:120–128

    Article  MATH  Google Scholar 

  15. Chan LK, Mead E (1971) Linear estimation of the parameters of the extreme-value distribution based on suitably chosen order statistics. IEEE Trans Reliab R-20:74–83

    Article  Google Scholar 

  16. Cramer E, Bagh C (2011) Minimum and maximum information censoring plans in progressive censoring. Comm Stat Theory Meth 40:2511–2527

    Article  MATH  MathSciNet  Google Scholar 

  17. Cramer E, Ensenbach M (2011) Asymptotically optimal progressive censoring plans based on Fisher information. J Stat Plan Infer 141:1968–1980

    Article  MATH  MathSciNet  Google Scholar 

  18. Cramer E, Schmiedt AB (2011) Progressively Type-II censored competing risks data from Lomax distributions. Comput Stat Data Anal 55:1285–1303

    Article  MathSciNet  Google Scholar 

  19. Dahmen K, Burkschat M, Cramer E (2012) A- and D-optimal progressive Type-II censoring designs based on Fisher information. J Stat Comput Simul 82:879–905

    Article  MATH  MathSciNet  Google Scholar 

  20. Ebrahimi N, Maasoumi E, Soofi ES (1999) Ordering univariate distributions by entropy and variance. J Econometrics 90:317–336

    Article  MATH  MathSciNet  Google Scholar 

  21. Guilbaud O (2004) Exact non-parametric confidence, prediction and tolerance intervals with progressive type-II censoring. Scand J Stat 31:265–281

    Article  MATH  MathSciNet  Google Scholar 

  22. Gupta RD, Kundu D (2006) On the comparison of Fisher information of the Weibull and GE distributions. J Stat Plan Infer 136:3130–3144

    Article  MATH  MathSciNet  Google Scholar 

  23. Hassanein KM (1969) Estimation of the parameters of the extreme value distribution by use of two or three order statistics. Biometrika 56:429–436

    Article  MATH  Google Scholar 

  24. Hassanein KM (1971) Percentile estimators for the parameters of the Weibull distribution. Biometrika 58:673–676

    Article  MATH  Google Scholar 

  25. Hofmann G, Cramer E, Balakrishnan N, Kunert G (2005a) An asymptotic approach to progressive censoring. J Stat Plan Infer 130:207–227

    Article  MATH  MathSciNet  Google Scholar 

  26. Hu T, Zhuang W (2005) A note on stochastic comparisons of generalized order statistics. Stat Probab Lett 72:163–170

    Article  MATH  MathSciNet  Google Scholar 

  27. Kundu D (2008) Bayesian inference and life testing plan for the Weibull distribution in presence of progressive censoring. Technometrics 50:144–154

    Article  MathSciNet  Google Scholar 

  28. Kundu D, Pradhan B (2009) Bayesian inference and life testing plans for generalized exponential distribution. Sci China Ser A 52:1373–1388

    Article  MATH  MathSciNet  Google Scholar 

  29. Kundu D, Pradhan B (2011) Bayesian analysis of progressively censored competing risks data. Sankhyā Ser B 73:276–296

    Article  MATH  MathSciNet  Google Scholar 

  30. Ng HKT, Chan PS, Balakrishnan N (2004) Optimal progressive censoring plans for the Weibull distribution. Technometrics 46:470–481

    Article  MathSciNet  Google Scholar 

  31. Ogawa J (1951) Contributions to the theory of systematic statistics. I. Osaka Math J 3: 175–213

    MathSciNet  Google Scholar 

  32. Oja H (1981) On location, scale, skewness and kurtosis of univariate distributions. Scand J Stat 8:154–168

    MATH  MathSciNet  Google Scholar 

  33. Pareek B, Kundu D, Kumar S (2009) On progressively censored competing risks data for Weibull distributions. Comput Stat Data Anal 53:4083–4094

    Article  MATH  MathSciNet  Google Scholar 

  34. Park S (1996) Fisher information in order statistics. J Am Stat Assoc 91:385–390

    Article  MATH  Google Scholar 

  35. Park S, Ng HKT (2012) Missing information and an optimal one-step plan in a Type II progressive censoring scheme. Stat Probab Lett 82:396–402

    Article  MATH  MathSciNet  Google Scholar 

  36. Park S, Zheng G (2004) Equal Fisher information in order statistics. Sankhyā 66:20–34

    MATH  MathSciNet  Google Scholar 

  37. Park S, Balakrishnan N, Kim SW (2011) Fisher information in progressive hybrid censoring schemes. Statistics 45:623–631

    Article  MATH  MathSciNet  Google Scholar 

  38. Pellerey F, Shaked M, Zinn J (2000) Nonhomogeneous Poisson processes and logconcavity. Probab Eng Inform Sci 14:353–373

    Article  MATH  MathSciNet  Google Scholar 

  39. Pradhan B, Kundu D (2009) On progressively censored generalized exponential distribution. TEST 18:497–515

    Article  MATH  MathSciNet  Google Scholar 

  40. Pradhan B, Kundu D (2013) Inference and optimal censoring schemes for progressively censored Birnbaum-Saunders distribution. J Stat Plan Infer 143:1098–1108

    Article  MATH  MathSciNet  Google Scholar 

  41. Pukelsheim F (1993) Optimal design of experiments. Wiley, New York

    MATH  Google Scholar 

  42. Saleh AKME, Ali MM (1966) Asymptotic optimum quantiles for the estimation of the parameters of the negative exponential distribution. Ann Math Stat 37:143–151

    Article  MATH  MathSciNet  Google Scholar 

  43. Sarhan AE, Greenberg BG, Ogawa J (1963) Simplified estimates for the exponential distribution. Ann Math Stat 34:102–116

    Article  MATH  MathSciNet  Google Scholar 

  44. Sen A, Kannan N, Kundu D (2013) Bayesian planning and inference of a progressively censored sample from linear hazard rate distribution. Comput Stat Data Anal 62:108–121

    Article  MathSciNet  Google Scholar 

  45. Shaked M, Shanthikumar JG (2007) Stochastic orders. Springer, Berlin

    Book  MATH  Google Scholar 

  46. Sultan KS, Alsadat NH, Kundu D (2014) Bayesian and maximum likelihood estimations of the inverse Weibull parameters under progressive type-II censoring. J Stat Comput Simul 84:2248–2265

    Article  MathSciNet  Google Scholar 

  47. Volterman W, Davies KF, Balakrishnan N (2012) Pitman closeness as a criterion for the determination of the optimal progressive censoring scheme. Stat Meth 9:563–572

    Article  MathSciNet  Google Scholar 

  48. Vuong QN, Cramer E (2010) Computation of optimal progressive Type-II censoring plans in large samples via genetic algorithms. Technical report. RWTH Aachen University, Aachen

    Google Scholar 

  49. Zhang Y, Meeker WQ (2005) Bayesian life test planning for the Weibull distribution with given shape parameter. Metrika 61:237–249

    Article  MATH  MathSciNet  Google Scholar 

  50. Zheng G, Park S (2004) On the Fisher information in multiply censored and progressively censored data. Comm Stat Theory Meth 33:1821–1835

    Article  MATH  MathSciNet  Google Scholar 

  51. Zheng G, Balakrishnan N, Park S (2009) Fisher information in ordered data: a review. Stat Interface 2:101–113

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Balakrishnan, N., Cramer, E. (2014). Optimal Experimental Designs. In: The Art of Progressive Censoring. Statistics for Industry and Technology. Birkhäuser, New York, NY. https://doi.org/10.1007/978-0-8176-4807-7_26

Download citation

Publish with us

Policies and ethics