Nonparametric Inferential Issues in Progressive Type-II Censoring

  • N. Balakrishnan
  • Erhard Cramer
Part of the Statistics for Industry and Technology book series (SIT)


Nonparametric statistical tests are reviewed. This includes precedence-type tests as well as test for hazard rate ordering.


Power Function Cumulative Distribution Function Hazard Rate Probability Mass Function Generalize Order Statistic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 89.
    Balakrishnan N, Bordes L (2004) Non-parametric hazard rate estimation under progressive Type-II censoring. In: Balakrishnan N, Rao CR (eds) Advances in survival analysis. Handbook of statistics, vol 23. Elsevier, Amsterdam, pp 227–249CrossRefGoogle Scholar
  2. 114.
    Balakrishnan N, Ng HKT (2006) Precedence-type tests and applications. Wiley, HobokenCrossRefMATHGoogle Scholar
  3. 141.
    Balakrishnan N, Tripathi RC, Kannan N (2008c) On the joint distribution of placement statistics under progressive censoring and applications to precedence test. J Stat Plan Infer 138:1314–1324CrossRefMATHMathSciNetGoogle Scholar
  4. 147.
    Balakrishnan N, Tripathi RC, Kannan N, Ng, HKT (2010e) Some nonparametric precedence-type tests based on progressively censored samples and evaluation of power. J Stat Plan Infer 140:559–573CrossRefMATHMathSciNetGoogle Scholar
  5. 234.
    Burkschat M, Cramer E, Kamps U (2003) Dual generalized order statistics. Metron 61: 13–26MathSciNetGoogle Scholar
  6. 402.
    Gibbons J, Chakraborti S (2003) Nonparametric statistical inference. Taylor & Francis, PhiladelphiaMATHGoogle Scholar
  7. 507.
    Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53:457–481CrossRefMATHMathSciNetGoogle Scholar
  8. 537.
    Kochar SC (1981) A new distribution-free test for the equality of two failure rates. Biometrika 68:423–426CrossRefMATHMathSciNetGoogle Scholar
  9. 642.
    Maturi TA, Coolen-Schrijner P, Coolen FP (2010) Nonparametric predictive comparison of lifetime data under progressive censoring. J Stat Plan Infer 140:515–525CrossRefMATHMathSciNetGoogle Scholar
  10. 672.
    Nelson LS (1963) Tables for a precedence life test. Technometrics 5:491–499CrossRefMATHGoogle Scholar
  11. 673.
    Nelson LS (1986) Precedence life test. In: Kotz S, Johnson NL (eds) Encyclopedia of statistical science, vol 7. Wiley, New York, pp 134–136Google Scholar
  12. 676.
    Nelson W (1982) Applied life data analysis. Wiley, New YorkCrossRefMATHGoogle Scholar
  13. 682.
    Ng HKT, Balakrishnan N (2002) Wilcoxon-type rank-sum precedence tests: large-sample approximation and evaluation. Appl Stoch Models Bus Ind 18:271–286CrossRefMATHMathSciNetGoogle Scholar
  14. 683.
    Ng HKT, Balakrishnan N (2004) Wilcoxon-type rank-sum precedence tests. Aust N Z J Stat 46:631–648CrossRefMATHMathSciNetGoogle Scholar
  15. 684.
    Ng HKT, Balakrishnan N (2005) Weighted precedence and maximal precedence tests and an extension to progressive censoring. J Stat Plan Infer 135:197–221CrossRefMATHMathSciNetGoogle Scholar
  16. 685.
    Ng HKT, Balakrishnan N (2006) Precedence testing. In: Kotz S, Balakrishnan N, Read CB, Vidakovic B (eds) Encyclopedia of statistical science, vol 9, 2nd edn. Wiley, Hoboken, pp 6317–6323Google Scholar
  17. 686.
    Ng HKT, Balakrishnan N (2010) Precedence-type test based on Kaplan-Meier estimator of cumulative distribution function. J Stat Plan Infer 140:2295–2311CrossRefMATHMathSciNetGoogle Scholar
  18. 802.
    Sharafi M, Balakrishnan N, Khaledi BE (2013) Distribution-free comparison of hazard rates of two distributions under progressive type-II censoring. J Stat Comput Simul 83: 1527–1542CrossRefMathSciNetGoogle Scholar
  19. 892.
    Watson GS, Leadbetter MR (1964a) Hazard analysis. I. Biometrika 51:175–184CrossRefMATHMathSciNetGoogle Scholar
  20. 893.
    Watson GS, Leadbetter MR (1964b) Hazard analysis II. Sankhyā Ser A 26:101–116MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • N. Balakrishnan
    • 1
  • Erhard Cramer
    • 2
  1. 1.Department of Mathematics and StatisticsMcMaster UniversityHamiltonCanada
  2. 2.Institute of StatisticsRWTH Aachen UniversityAachenGermany

Personalised recommendations