Advertisement

Counting and Quantile Processes and Progressive Censoring

  • N. Balakrishnan
  • Erhard Cramer
Chapter
Part of the Statistics for Industry and Technology book series (SIT)

Abstract

Results for counting and quantile processes based on progressively Type-II censored data are presented.

Keywords

Hazard Rate Regularity Condition Homogeneity Test Kernel Estimator Nonparametric Estimator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 40.
    Alvarez-Andrade S, Bordes L (2004) Empirical quantile process under type-II progressive censoring. Stat Probab Lett 68:111–123CrossRefMATHMathSciNetGoogle Scholar
  2. 41.
    Alvarez-Andrade S, Bordes L (2008) Type-II progressive censoring and related processes. Rev Roumaine Math Pures Appl 63:267–276MathSciNetGoogle Scholar
  3. 42.
    Alvarez-Andrade S, Balakrishnan N, Bordes L (2007) Homogeneity tests based on several progressively Type-II censored samples. J Multivariate Anal 98:1195–1213CrossRefMATHMathSciNetGoogle Scholar
  4. 43.
    Alvarez-Andrade S, Balakrishnan N, Bordes L (2009) Proportional hazards regression under progressive Type-II censoring. Ann Inst Stat Math 61:887–903CrossRefMathSciNetGoogle Scholar
  5. 46.
    Andersen PK, Borgan Ø, Gill RD, Keiding N (1993) Statistical models based on counting processes. Springer, New YorkCrossRefMATHGoogle Scholar
  6. 89.
    Balakrishnan N, Bordes L (2004) Non-parametric hazard rate estimation under progressive Type-II censoring. In: Balakrishnan N, Rao CR (eds) Advances in survival analysis. Handbook of statistics, vol 23. Elsevier, Amsterdam, pp 227–249CrossRefGoogle Scholar
  7. 145.
    Balakrishnan N, Bordes L, Zhao X (2010c) Minimum-distance parametric estimation under progressive Type-I censoring. IEEE Trans Reliab 59:413–425CrossRefGoogle Scholar
  8. 216.
    Bordes L (2004) Non-parametric estimation under progressive censoring. J Stat Plan Infer 119:171–189CrossRefMATHMathSciNetGoogle Scholar
  9. 225.
    Burke M (2011) Nonparametric estimation of a survival function under progressive Type-I multistage censoring. J Stat Plan Infer 141:910–923CrossRefMATHMathSciNetGoogle Scholar
  10. 376.
    Fleming TR, Harrington DP (2005) Counting processes and survival analysis. Wiley, New YorkCrossRefMATHGoogle Scholar
  11. 724.
    Pollard D (1984) Convergence of stochastic processes. Springer, New YorkCrossRefMATHGoogle Scholar
  12. 875.
    Viveros R, Balakrishnan N (1994) Interval estimation of parameters of life from progressively censored data. Technometrics 36:84–91CrossRefMATHMathSciNetGoogle Scholar
  13. 892.
    Watson GS, Leadbetter MR (1964a) Hazard analysis. I. Biometrika 51:175–184CrossRefMATHMathSciNetGoogle Scholar
  14. 893.
    Watson GS, Leadbetter MR (1964b) Hazard analysis II. Sankhyā Ser A 26:101–116MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • N. Balakrishnan
    • 1
  • Erhard Cramer
    • 2
  1. 1.Department of Mathematics and StatisticsMcMaster UniversityHamiltonCanada
  2. 2.Institute of StatisticsRWTH Aachen UniversityAachenGermany

Personalised recommendations