Advertisement

Progressive Type-I Interval Censored Data

  • N. Balakrishnan
  • Erhard Cramer
Chapter
Part of the Statistics for Industry and Technology book series (SIT)

Abstract

Inference for progressive Type-I interval censored data is presented. The discussion includes parametric inference as well as problems of choosing optimal inspection times and optimal progressive interval censoring proportions.

Keywords

Weibull Distribution Inspection Time Likelihood Equation Inspection Scheme Inspection Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 11.
    Aggarwala R (2001) Progressive interval censoring: some mathematical results with applications to inference. Comm Stat Theory Meth 30:1921–1935CrossRefMATHMathSciNetGoogle Scholar
  2. 44.
    Amin ZH (2008b) A note on the parameter estimation for the lognormal distribution based on progressively Type-I interval censored samples. Model Assist Stat Appl 3:169–176MATHMathSciNetGoogle Scholar
  3. 252.
    Chen DG, Lio YL (2010) Parameter estimations for generalized exponential distribution under progressive Type-I interval censoring. Comput Stat Data Anal 54:1581–1591CrossRefMATHMathSciNetGoogle Scholar
  4. 255.
    Cheng C, Chen J, Li Z (2010) A new algorithm for maximum likelihood estimation with progressive Type-I interval censored data. Comm Stat Simul Comput 39:750–766CrossRefMATHMathSciNetGoogle Scholar
  5. 280.
    Corana A, Marchesi M, Martini C, Ridella S (1987) Minimizing multimodal functions of continuous variables with the “Simulated Annealing” algorithm. ACM Trans Math Software 13:262–280. See also Corana et al. [281]Google Scholar
  6. 281.
    Corana A, Marchesi M, Martini C, Ridella S (1989) Corrigenda: “minimizing multimodal functions of continuous variables with the ‘Simulated Annealing’ algorithm”. ACM Trans Math Software 15:287. See Corana et al. [280]Google Scholar
  7. 555.
    Kulldorff G (1961) Contributions to the theory of estimation from grouped and partially grouped samples. Wiley, New YorkGoogle Scholar
  8. 575.
    Lawless JF (2003) Statistical models and methods for lifetime data, 2nd edn. Wiley, New YorkMATHGoogle Scholar
  9. 601.
    Lin YJ, Lio YL (2012) Bayesian inference under progressive type-I interval censoring. J Appl Stat 39:1811–1824CrossRefMATHMathSciNetGoogle Scholar
  10. 606.
    Lin CT, Wu SJS, Balakrishnan N (2009a) Planning life tests with progressively Type-I interval censored data from the lognormal distribution. J Stat Plan Infer 139:54–61CrossRefMATHMathSciNetGoogle Scholar
  11. 609.
    Lin CT, Balakrishnan N, Wu SJS (2011b) Planning life tests based on progressively Type-I grouped censored data from the Weibull distribution. Comm Stat Simul Comput 40: 574–595CrossRefMATHMathSciNetGoogle Scholar
  12. 614.
    Lio YL, Chen DG, Tsai TR (2011) Parameter estimations for generalized Rayleigh distribution under progressively Type-I interval censored data. Open J Stat 1:46–57CrossRefMathSciNetGoogle Scholar
  13. 687.
    Ng HKT, Wang Z (2009) Statistical estimation for the parameters of Weibull distribution based on progressively type-I interval censored sample. J Stat Comput Simul 79:145–159CrossRefMATHMathSciNetGoogle Scholar
  14. 716.
    Peng XY, Yan ZZ (2013) Bayesian estimation for generalized exponential distribution based on progressive type-I interval censoring. Acta Math Appl Sin Engl Ser 29:391–402CrossRefMATHMathSciNetGoogle Scholar
  15. 836.
    Tan Z (2009) A new approach to MLE of Weibull distribution with interval data. Reliab Eng Syst Safety 94:394–403CrossRefGoogle Scholar
  16. 841.
    Teimouri M, Gupta AK (2012) Estimation methods for the Gompertz-Makeham distribution under progressively Type-I interval censoring scheme. Natl Acad Sci Lett 35:227–235CrossRefGoogle Scholar
  17. 842.
    Teimouri M, Nadarajah S, Hsing Shih S (2014) EM algorithms for beta kernel distributions. J Stat Comput Simul 84:451–467CrossRefMathSciNetGoogle Scholar
  18. 873.
    Vasudeva Rao A, Dattatreya Rao A, Narasimham V (1994) Asymptotically optimal grouping for maximum likelihood estimation of Weibull parameters. Comm Stat Simul Comput 23:1077–1096CrossRefMathSciNetGoogle Scholar
  19. 921.
    Wu SJ, Chang CT, Liao KJ, Huang SR (2008b) Planning of progressive group-censoring life tests with cost considerations. J Appl Stat 35:1293–1304CrossRefMATHMathSciNetGoogle Scholar
  20. 924.
    Xiang L, Tse SK (2005) Maximum likelihood estimation in survival studies under progressive interval censoring with random removals. J Biopharm Stat 15:981–991CrossRefMathSciNetGoogle Scholar
  21. 931.
    Xiuyun P, Zaizai Y (2011) Parameter estimations with gamma distribution based on progressive Type-I interval censoring. In: IEEE international conference on computer science and automation engineering (CSAE), 2011, pp 449–453Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • N. Balakrishnan
    • 1
  • Erhard Cramer
    • 2
  1. 1.Department of Mathematics and StatisticsMcMaster UniversityHamiltonCanada
  2. 2.Institute of StatisticsRWTH Aachen UniversityAachenGermany

Personalised recommendations