Advertisement

Bayesian Inference for Progressively Type-II Censored Data

  • N. Balakrishnan
  • Erhard Cramer
Chapter
Part of the Statistics for Industry and Technology book series (SIT)

Abstract

Bayesian approaches for progressively Type-II censored data are reviewed. The presentation includes, e.g., exponential, Weibull, Pareto, and Burr distributions.

Keywords

Posterior Distribution Loss Function Bayesian Inference Rayleigh Distribution Inverse Gamma Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 2.
    Abdel-Aty Y, Franz J, Mahmoud MAW (2007) Bayesian prediction based on generalized order statistics using multiply type-II censoring. Statistics 41:495–504CrossRefMATHMathSciNetGoogle Scholar
  2. 19.
    Ahmadi K, Rezaei M, Yousefzadeh F (2014) Estimation for the generalized half-normal distribution based on progressive type-II censoring. J Stat Comput Simul (to appear)Google Scholar
  3. 26.
    Al-Aboud FM (2009) Bayesian estimations for the extreme value distribution using progressive censored data and asymmetric loss. Int Math Forum 4:1603–1622MATHMathSciNetGoogle Scholar
  4. 28.
    AL-Hussaini EK, Ahmad AEBA (2003) On Bayesian predictive distributions of generalized order statistics. Metrika 57:165–176Google Scholar
  5. 29.
    AL-Hussaini EK, Jaheen ZF (1992) Bayesian estimation of the parameters, reliability and failure rate functions of the Burr type XII failure model. J Stat Comput Simul 41:31–40Google Scholar
  6. 30.
    AL-Hussaini EK, Jaheen ZF (1994) Approximate Bayes estimators applied to the Burr model. Comm Stat Theory Meth 23:99–121Google Scholar
  7. 34.
    Ali Mousa MAM (2001) Inference and prediction for Pareto progressively censored data. J Stat Comput Simul 71:163–181CrossRefMATHMathSciNetGoogle Scholar
  8. 36.
    Ali Mousa MAM, Al-Sagheer S (2006) Statistical inference for the Rayleigh model based on progressively Type-II censored data. Statistics 40:149–157CrossRefMATHMathSciNetGoogle Scholar
  9. 38.
    Ali Mousa MAM, Jaheen ZF (2002) Statistical inference for the Burr model based on progressively censored data. Comput Math Appl 43:1441–1449CrossRefMATHMathSciNetGoogle Scholar
  10. 45.
    Amin ZH (2008) Bayesian inference for the Pareto lifetime model under progressive censoring with binomial removals. J Appl Stat 35:1203–1217CrossRefMATHMathSciNetGoogle Scholar
  11. 53.
    Arnold BC, Press SJ (1983) Bayesian inference for Pareto populations. J Econometrics 21:287–306CrossRefMathSciNetGoogle Scholar
  12. 54.
    Arnold BC, Press SJ (1989) Bayesian estimation and prediction for Pareto data. J Am Stat Assoc 84:1079–1084CrossRefMATHMathSciNetGoogle Scholar
  13. 63.
    Asgharzadeh A, Valiollahi R (2008) Estimation based on progressively censored data from the Burr model. Int Math Forum 3:2113–2121MATHMathSciNetGoogle Scholar
  14. 65.
    Ashour SK, Hassen A, Youssef A (1991) Bayesian estimation of a linear failure rate. IAPQR Trans 16:9–16MATHGoogle Scholar
  15. 73.
    Bain LJ, Engelhardt M (1973) Interval estimation for the two-parameter double exponential distribution. Technometrics 15:875–887CrossRefMATHMathSciNetGoogle Scholar
  16. 191.
    Berger JO, Sun D (1993) Bayesian analysis for the Poly-Weibull distribution. J Am Stat Assoc 88:1412–1418CrossRefMATHMathSciNetGoogle Scholar
  17. 221.
    Brown L (1968) Inadmissibility of the usual estimators of scale parameters in problems with unknown location and scale parameters. Ann Math Stat 39:29–48CrossRefMATHGoogle Scholar
  18. 238.
    Calabria R, Pulcini G (1996) Point estimation under asymmetric loss functions for left-truncated exponential samples. Comm Stat Theory Meth 25:585–600CrossRefMATHMathSciNetGoogle Scholar
  19. 317.
    Crowley J, Hu M (1977) Covariance analysis of heart transplant survival data. J Am Stat Assoc 72:27–36CrossRefGoogle Scholar
  20. 349.
    Elkahlout GR (2010) Statistical inference using general progressively censored data from the generalized exponential distribution with asymmetric loss. Far East J Theor Stat 30: 117–144MATHMathSciNetGoogle Scholar
  21. 357.
    Evans I, Nigm AHM (1980) Bayesian prediction for the left truncated exponential distribution. Technometrics 22:201–204CrossRefMATHGoogle Scholar
  22. 363.
    Fernández AJ (2000) Bayesian inference from type II doubly censored Rayleigh data. Stat Probab Lett 48:393–399CrossRefMATHGoogle Scholar
  23. 364.
    Fernández AJ (2004) On estimating exponential parameters with general type II progressive censoring. J Stat Plan Infer 121:135–147CrossRefMATHGoogle Scholar
  24. 384.
    Fu J, Xu A, Tang Y (2012) Objective Bayesian analysis of Pareto distribution under progressive Type-II censoring. Stat Probab Lett 82:1829–1836CrossRefMATHMathSciNetGoogle Scholar
  25. 394.
    Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the bayesian restauration of images. IEEE Trans Pattern Anal Mach Intell 6:721–741CrossRefMATHGoogle Scholar
  26. 422.
    Gumbel EJ, Mustafi CK (1967) Some analytical properties of bivariate extremal distributions. J Am Stat Assoc 62:569–588CrossRefMATHMathSciNetGoogle Scholar
  27. 475.
    Jaheen ZF (2005) Estimation based on generalized order statistics from the Burr model. Comm Stat Theory Meth 34:785–794CrossRefMATHMathSciNetGoogle Scholar
  28. 494.
    Kaminskiy MP, Krivtsov VV (2005) A simple procedure for Bayesian estimation of the Weibull distribution. IEEE Trans Reliab 54:612–616CrossRefGoogle Scholar
  29. 529.
    Kim C, Han K (2009) Estimation of the scale parameter of the Rayleigh distribution under general progressive censoring. J Korean Stat Soc 38:239–246CrossRefMathSciNetGoogle Scholar
  30. 530.
    Kim C, Han K (2010) Estimation of the scale parameter of the half-logistic distribution under progressively type II censored sample. Stat Papers 51:375–387CrossRefMATHMathSciNetGoogle Scholar
  31. 531.
    Kim C, Jung J, Chung Y (2011) Bayesian estimation for the exponentiated Weibull model under Type II progressive censoring. Stat Papers 52:53–70CrossRefMATHMathSciNetGoogle Scholar
  32. 534.
    Klakattawi HS, Baharith LA, Al-Dayian GR (2011) Bayesian and non bayesian estimations on the exponentiated modified Weibull distribution for progressive censored sample. Comm Stat Simul Comput 40:1291–1309CrossRefMATHMathSciNetGoogle Scholar
  33. 535.
    Klakattawi HS, Baharith LA, AL-Dayian GR (2012) Bayesian predictions of progressive censored data from the exponentiated modified Weibull distribution. Can J Comput Math Nat Sci Eng Med 3:247–255Google Scholar
  34. 557.
    Kundu D (2008) Bayesian inference and life testing plan for the Weibull distribution in presence of progressive censoring. Technometrics 50:144–154CrossRefMathSciNetGoogle Scholar
  35. 559.
    Kundu D, Gupta RD (2006) Estimation of \(P[Y < X]\) for Weibull distributions. IEEE Trans Reliab 55:270–280CrossRefGoogle Scholar
  36. 562.
    Kundu D, Pradhan B (2009) Bayesian inference and life testing plans for generalized exponential distribution. Sci China Ser A 52:1373–1388CrossRefMATHMathSciNetGoogle Scholar
  37. 575.
    Lawless JF (2003) Statistical models and methods for lifetime data, 2nd edn. Wiley, New YorkMATHGoogle Scholar
  38. 587.
    Li X, Shi Y, Wei J, Chai J (2007) Empirical Bayes estimators of reliability performances using LINEX loss under progressively Type-II censored samples. Math Comput Simul 73:320–326CrossRefMATHMathSciNetGoogle Scholar
  39. 588.
    Li F, Shi Y, Tian Y (2008) Bayesian estimation of a Weibull model based on progressively censored data. Chinese J Eng Math 25:641–650MATHMathSciNetGoogle Scholar
  40. 595.
    Lieblein J, Zelen M (1956) Statistical investigation of the fatigue life of deep groove ball bearings. J Res Nat Bur Stand 57:273–316CrossRefGoogle Scholar
  41. 604.
    Lin CT, Wu SJS, Balakrishnan N (2006) Monte Carlo methods for Bayesian inference on the linear hazard rate distribution. Comm Stat Simul Comput 35:575–590CrossRefMATHMathSciNetGoogle Scholar
  42. 612.
    Lindley D (1980) Approximate Bayesian methods. Trabajos de Estadistica Y de Investigacion Operativa 31:223–245CrossRefGoogle Scholar
  43. 623.
    Lwin T (1973) Estimation of the tail of the Paretian law. Skand Aktuarietidskr 1972: 170–178MATHMathSciNetGoogle Scholar
  44. 627.
    Madi MT, Raqab MZ (2009) Bayesian inference for the generalized exponential distribution based on progressively censored data. Comm Stat Theory Meth 38:2016–2029CrossRefMATHMathSciNetGoogle Scholar
  45. 744.
    Raqab MZ, Madi MT (2002) Bayesian prediction of the total time on test using doubly censored Rayleigh data. J Stat Comput Simul 72:781–789CrossRefMATHMathSciNetGoogle Scholar
  46. 749.
    Rastogi MK, Tripathi YM, Wu SJ (2012) Estimating the parameters of a bathtub-shaped distribution under progressive type-II censoring. J Appl Stat 39:2389–2411CrossRefMathSciNetGoogle Scholar
  47. 778.
    Sarhan AM, Hamilton D, Smith B (2012) Parameter estimation for a two-parameter bathtub-shaped lifetime distribution. Appl Math Model 36:5380–5392CrossRefMATHMathSciNetGoogle Scholar
  48. 782.
    Schenk N (2001) Point estimation with sequential order statistics from exponential distributions. Ph.D. thesis, University of Oldenburg, Oldenburg, GermanyGoogle Scholar
  49. 783.
    Schenk N, Burkschat M, Cramer E, Kamps U (2011) Bayesian estimation and prediction with multiply Type-II censored samples of sequential order statistics from one- and two-parameter exponential distributions. J Stat Plan Infer 141:1575–1587CrossRefMATHMathSciNetGoogle Scholar
  50. 792.
    Sen A, Kannan N, Kundu D (2013) Bayesian planning and inference of a progressively censored sample from linear hazard rate distribution. Comput Stat Data Anal 62:108–121CrossRefMathSciNetGoogle Scholar
  51. 794.
    Shafay AR, Balakrishnan N, Sultan KS (2014) Two-sample Bayesian prediction for sequential order statistics from exponential distribution based on multiply Type-II censored samples. J Stat Comput Simul 84:526–544CrossRefMathSciNetGoogle Scholar
  52. 810.
    Soland RM (1969) Bayesian analysis of the Weibull process with unknown scale and shape parameters. IEEE Trans Reliab R-18:181–184CrossRefGoogle Scholar
  53. 811.
    Soliman AA (2005) Estimation of parameters of life from progressively censored data using Burr-XII model. IEEE Trans Reliab 54:34–42CrossRefGoogle Scholar
  54. 812.
    Soliman AA (2006) Estimators for the finite mixture of Rayleigh model based on progressively censored data. Comm Stat Theory Meth 35:803–820CrossRefMATHMathSciNetGoogle Scholar
  55. 813.
    Soliman AA (2008) Estimations for Pareto model using general progressive censored data and asymmetric loss. Comm Stat Theory Meth 37:1353–1370CrossRefMATHMathSciNetGoogle Scholar
  56. 845.
    Tierney L, Kadane JB (1986) Accurate approximations for posterior moments and marginal densities. J Am Stat Assoc 81:82–86CrossRefMATHMathSciNetGoogle Scholar
  57. 869.
    Varde SD (1969) Life testing and reliability estimation for the two parameter exponential distribution. J Am Stat Assoc 64:621–631CrossRefMATHMathSciNetGoogle Scholar
  58. 870.
    Varian HR (1974) A Bayesian approach to real estate assessment. In: Fienberg S, Zellner A (eds) Studies in Bayesian econometrics and statistics. North-Holland, Amsterdam, pp 195–208Google Scholar
  59. 871.
    Varian HR (2000) Variants in economic theory: selected works of Hal R. Varian. Edward Elgar Publ Ltd., NorthamptonGoogle Scholar
  60. 915.
    Wu SJ, Chen DH, Chen ST (2006) Bayesian inference for Rayleigh distribution under progressive censored sample. Appl Stoch Models Bus Ind 22:269–279CrossRefMathSciNetGoogle Scholar
  61. 938.
    Zellner A (1986) Bayesian estimation and prediction using asymmetric loss functions. J Am Stat Assoc 81:446–451CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • N. Balakrishnan
    • 1
  • Erhard Cramer
    • 2
  1. 1.Department of Mathematics and StatisticsMcMaster UniversityHamiltonCanada
  2. 2.Institute of StatisticsRWTH Aachen UniversityAachenGermany

Personalised recommendations