Advertisement

Point Estimation in Progressive Type-I Censoring

  • N. Balakrishnan
  • Erhard Cramer
Chapter
Part of the Statistics for Industry and Technology book series (SIT)

Abstract

Results on likelihood inference in progressive Type-I censoring are reviewed for a plenty of distributions including one- and two-parameter exponential, extreme value, Weibull, normal, and Burr distributions.

Keywords

Maximum Likelihood Estimator Likelihood Equation Likelihood Inference Progressive Censoring Censor Order Statistic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 86.
    Balakrishnan N, Aggarwala R (2000) Progressive censoring: theory, methods, and applications. Birkhäuser, BostonCrossRefGoogle Scholar
  2. 92.
    Balakrishnan N, Cohen AC (1991) Order statistics and inference: estimation methods. Academic, BostonMATHGoogle Scholar
  3. 105.
    Balakrishnan N, Kateri M (2008) On the maximum likelihood estimation of parameters of Weibull distribution based on complete and censored data. Stat Probab Lett 78:2971–2975CrossRefMATHMathSciNetGoogle Scholar
  4. 150.
    Balakrishnan N, Han D, Iliopoulos G. (2011c) Exact inference for progressively Type-I censored exponential failure data. Metrika 73:335–358CrossRefMATHMathSciNetGoogle Scholar
  5. 267.
    Cohen AC (1963) Progressively censored samples in life testing. Technometrics 5:327–329CrossRefMATHMathSciNetGoogle Scholar
  6. 268.
    Cohen AC (1965) Maximum likelihood estimation in the Weibull distribution based on complete and on censored samples. Technometrics 7:579–588CrossRefMathSciNetGoogle Scholar
  7. 269.
    Cohen AC (1966) Life testing and early failure. Technometrics 17:347–351CrossRefGoogle Scholar
  8. 270.
    Cohen AC (1975) Multi-censored sampling in the three parameter Weibull distribution. Technometrics 17:347–351CrossRefMATHMathSciNetGoogle Scholar
  9. 271.
    Cohen AC (1976) Progressively censored sampling in the three parameter log-normal distribution. Technometrics 18:99–103CrossRefMATHMathSciNetGoogle Scholar
  10. 272.
    Cohen AC (1991) Truncated and censored samples. theory and applications. Marcel Dekker, New YorkGoogle Scholar
  11. 273.
    Cohen AC (1995) MLEs under censoring and truncation and inference. In: Balakrishnan N, Basu AP (eds) The exponential distribution: theory, methods, and applications. Gordon and Breach, Newark, pp 33–51Google Scholar
  12. 274.
    Cohen AC, Norgaard NJ (1977) Progressively censored sampling in the three-parameter gamma distribution. Technometrics 19:333–340CrossRefMATHMathSciNetGoogle Scholar
  13. 277.
    Cohen AC, Whitten BJ (1988) Parameter estimation in reliability and life span models. Marcel Dekker, New YorkMATHGoogle Scholar
  14. 306.
    Cramer E, Tamm M (2013) On a correction of the scale MLE for a two-parameter exponential distribution under progressive Type-I censoring. Comm Stat Theory Meth (to appear)Google Scholar
  15. 353.
    Epstein B (1960) Estimation from life test data. Technometrics 2:447–454CrossRefMATHMathSciNetGoogle Scholar
  16. 387.
    Gajjar A, Khatri C (1969) Progressively censored samples from log-normal and logistic distributions. Technometrics 11:793–803CrossRefMATHGoogle Scholar
  17. 403.
    Gibbons DI, Vance LC (1983) Estimators for the 2-parameter Weibull distribution with progressively censored samples. IEEE Trans Reliab 32:95–99CrossRefMATHGoogle Scholar
  18. 424.
    Gupta PL, Gupta RC, Lvin SJ (1996) Analysis of failure time data by Burr distribution. Comm Stat Theory Meth 25:2013–2024CrossRefMATHMathSciNetGoogle Scholar
  19. 476.
    Jalali A, Watkins AJ (2009) On maximum likelihood estimation for the two parameter Burr XII distribution. Comm Stat Theory Meth 38:1916–1926CrossRefMATHMathSciNetGoogle Scholar
  20. 481.
    Johnson LG (1964) The statistical treatment of fatigue experiments. Elsevier, AmsterdamGoogle Scholar
  21. 583.
    Lemon GH (1975) Maximum likelihood estimation for the three parameter Weibull distribution based on censored samples. Technometrics 17:247–254CrossRefMATHMathSciNetGoogle Scholar
  22. 655.
    Montanari GC, Cacciari M (1988) Progressively-censored aging tests on XPLE-insulated cable models. IEEE Trans Electr Insul 23:365–372CrossRefGoogle Scholar
  23. 676.
    Nelson W (1982) Applied life data analysis. Wiley, New YorkCrossRefMATHGoogle Scholar
  24. 754.
    Ringer LJ, Sprinkle EE (1972) Estimation of the parameters of the Weibull distribution from multicensored samples. IEEE Trans Reliab 21:46–51CrossRefGoogle Scholar
  25. 830.
    Tadikamalla PR (1980) A look at the Burr and related distributions. Int Stat Rev 48:337–344CrossRefMATHMathSciNetGoogle Scholar
  26. 886.
    Wang FK, Cheng YF (2010) EM algorithm for estimating the Burr XII parameters with multiple censored data. Qual Reliab Eng Int 26:615–630CrossRefGoogle Scholar
  27. 898.
    Wingo DR (1973) Solution of the three-parameter Weibull equations by constrained modified quasilinearization (progressively censored samples). IEEE Trans Reliab R-22: 96–102CrossRefGoogle Scholar
  28. 899.
    Wingo DR (1983) Maximum likelihood methods for fitting the Burr type XII distribution to life test data. Biom J 25:77–84MATHMathSciNetGoogle Scholar
  29. 901.
    Wingo DR (1993b) Maximum likelihood methods for fitting the Burr type XII distribution to multiply progressively censored life test data. Metrika 40:203–210CrossRefMATHMathSciNetGoogle Scholar
  30. 902.
    Wong JY (1993) Simultaneously estimating the three Weibull parameters from progressively censored samples. Microelectron Reliab 3:2217–2224CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • N. Balakrishnan
    • 1
  • Erhard Cramer
    • 2
  1. 1.Department of Mathematics and StatisticsMcMaster UniversityHamiltonCanada
  2. 2.Institute of StatisticsRWTH Aachen UniversityAachenGermany

Personalised recommendations