Skip to main content

Interval Computations and Interval-Related Statistical Techniques: Tools for Estimating Uncertainty of the Results of Data Processing and Indirect Measurements

  • Chapter
  • First Online:

Summary

In many practical situations, we only know the upper bound Δ on the (absolute value of the) measurement error Δ x that is, we only know that the measurement error is located on the interval [-Δ,Δ]. The traditional engineering approach to such situations is to assume that Δ x is uniformly distributed on [-Δ,Δ], and to use the corresponding statistical techniques. In some situations, however, this approach underestimates the error of indirect measurements. It is therefore desirable to directly process this interval uncertainty. Such “interval computations” methods have been developed since the 1950s. In this chapter, we provide a brief overview of related algorithms, results, and remaining open problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rabinovich, S.G.: Measurement Errors and Uncertainty. Theory and Practice, Springer Verlag, Berlin (2005)

    Google Scholar 

  2. Jaulin, L., et al.: Applied Interval Analysis. Springer Verlag, London (2001)

    MATH  Google Scholar 

  3. Kearfott, R.B., Kreinovich, V. (eds.): Applications of Interval Computations. Kluwer, Dordrecht (1996)

    MATH  Google Scholar 

  4. Jaynes, E.T., Bretthorst, G.L.: Probability Theory: The Logic of science, Cambridge University Press, Cambridge, UK (2003)

    Book  MATH  Google Scholar 

  5. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures, Chapman & Hall/CRC, Boca Raton, FL (2004)

    MATH  Google Scholar 

  6. Kreinovich, V., et al.: Monte-Carlo-type techniques for processing interval uncertainty, and their potential engineering applications. Reliable Computing 13(1), 25–69 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kreinovich, V., Ferson, S.: A new Cauchy-based black-box technique for uncertainty in risk analysis. Reliability Engineering and Systems Safety 85(1–3), 267–279 (2004)

    Article  Google Scholar 

  8. Trejo, R., Kreinovich, V.: Error estimations for indirect measurements. In: Rajasekaran, S. et al. (eds.), Handbook on Randomized Computing, pp. 673–729, Kluwer, Dordrecht (2001)

    Google Scholar 

  9. Archimedes, On the measurement of the circle, In: Heath, T.L. (ed.), The Works of Archimedes. Cambridge University Press, Cambridge (1897); Dover (1953)

    Google Scholar 

  10. Young, W.H.: Sull due funzioni a piu valori constituite dai limiti d’una funzione di variable reale a destra ed a sinistra di ciascun punto. Rendiconti Academia di Lincei, Classes di Scienza Fiziche, 17(5), 582–587 (1908)

    Google Scholar 

  11. Young, R.C.: The algebra of multi-valued quantities. Mathematische Annalen 104, 260–290 (1931)

    Article  MathSciNet  Google Scholar 

  12. Dwyer, P.S.: Linear Computations, Wiley, New York (1951)

    MATH  Google Scholar 

  13. Warmus, M.: Calculus of approximations. Bulletin de l’Academie Polonaise de Sciences 4(5), 253–257 (1956)

    MATH  MathSciNet  Google Scholar 

  14. Sunaga, T.: Theory of interval algebra and its application to numerical analysis, RAAG Memoirs, Ggujutsu Bunken Fukuy-kai, Tokyo 2, 29–46 (547–564) (1958)

    Google Scholar 

  15. Moore R.E.: Automatic error analysis in digital computation, Space Div. Report LMSD84821, Lockheed Missiles and Space Co. (1959)

    Google Scholar 

  16. Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ (1966)

    MATH  Google Scholar 

  17. Interval computations website http://www.cs.utep.edu/interval-comp

  18. Cerimele, M.M., Venturini Zilli, M.: Effective numerical approximation by intervals. Freiburger Intervall-Berichte, 85/4, 1–24 (1985)

    Google Scholar 

  19. Kreinovich, V., et al.: Computational Complexity and Feasibility of Data Processing and Interval Computations, Kluwer, Dordrecht (1997)

    Google Scholar 

  20. Berz, M., Hoffstätter, G.: Computation and application of Taylor polynomials with interval remainder bounds. Reliable Computing 4(1), 83–97 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Neumaier, A.: Taylor forms. Reliable Computing 9, 43–79 (2002)

    Article  MathSciNet  Google Scholar 

  22. Ferson, S.: Risk Assessment with Uncertainty Numbers: RiskCalc, CRC Press, Boca Raton, FL (2002)

    Google Scholar 

  23. Lodwick, W.A., Jamison, K.D.: Estimating and validating the cumulative distribution of a function of random variables. Reliable Computing 9(2), 127–141 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ferson, S., et al.: Constructing Probability Boxes and Dempster-Shafer Structures. Sandia National Laboratories, Report SAND2002-4015 (2003)

    Google Scholar 

  25. Berleant, D., Zhang, J.: Representation and problem solving with the distribution envelope determination (DEnv) method. Reliability Engineering and System Safety 85(1–3), 153–168 (2004)

    Article  Google Scholar 

  26. Granvilliers, L., Kreinovich, V., Mueller, N.: Novel approaches to numerical software with result verification. In: Alt, R. et al. (eds.), Numerical Software with Result Verification, Springer Lectures Notes in Computer Science 2291, 274–305 Springer, New York (2004)

    Chapter  Google Scholar 

  27. Kreinovich, V.: Probabilities, intervals, what next? Journal of Global Optimization 29(3) 265–280 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  28. Ferson, S., et al.: Exact bounds on finite populations of interval data. Reliable Computing 11 (3), 207–233 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  29. Ferson, S., et al.: Experimental Uncertainty Estimation and Statistics for Data Having Interval Uncertainty. Sandia National Laboratories, Report SAND2007-0939, May 2007; available as http://www.ramas.com/intstats.pdf and as part of the book DVD

  30. Kreinovich, V., et al.: Towards combining probabilistic and interval uncertainty in engineering calculations. Reliable Computing 12(6), 471–501 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. Kreinovich, V., et al.: Interval versions of statistical techniques. Journal of Computational and Applied Mathematics 199(2), 418–423 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladik Kreinovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Boston

About this chapter

Cite this chapter

Kreinovich, V. (2009). Interval Computations and Interval-Related Statistical Techniques: Tools for Estimating Uncertainty of the Results of Data Processing and Indirect Measurements. In: Pavese, F., Forbes, A. (eds) Data Modeling for Metrology and Testing in Measurement Science. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4804-6_4

Download citation

Publish with us

Policies and ethics