Skip to main content

Stochastic Processes on Manifolds

  • Chapter
  • First Online:
  • 4440 Accesses

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

This chapter extends the discussion of stochastic differential equations and Fokker–Planck equations on Euclidean space initiated in Chapter 4 to the case of processes that evolve on a Riemannian manifold. The manifold either can be embedded in ℝn or can be an abstract manifold with Riemannian metric defined in coordinates. Section 8.1 formulates SDEs and Fokker–Planck equations in a coordinate patch. Section 8.2 formulates SDEs for an implicitly defined embedded manifold using Cartesian coordinates in the ambient space. Section 8.3 focuses on Stratonovich SDEs on manifolds. The subtleties involved in the conversion between Itô and Stratonovich formulations are explained. Section 8.4 explores entropy inequalities on manifolds. In Section 8.5 the following examples are used to illustrate the general methodology: (1) Brownian motion on the sphere and (2) the stochastic kinematic cart described in Chapter 1. Section 8.6 discusses methods for solving Fokker–Planck equations on manifolds. Exercises involving numerical implementations are provided at the end of the chapter. The main points to take away from this chapter are: SDEs and Fokker–Planck equations can be formulated for stochastic processes in any coordinate patch of a manifold in a way that is very similar to the case of Rn; Stochastic processes on embedded manifolds can also be formulated extrinsically, i.e., using an implicit description of the manifold as a system of constraint equations; In some cases Fokker–Planck equations can be solved using separation of variables; Practical examples of this theory include Brownian motion on the sphere and the kinematic cart with noise.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Applebaum, D., Kunita, H., “Lévy flows on manifolds and Lévy processes on Lie groups,” J. Math. Kyoto Univ., 33/34, pp. 1103–1123, 1993.

    MathSciNet  Google Scholar 

  2. Atiyah, M., Bott, R., Patodi, V.K., “On the heat equation and the Index theorem,” Invent. Math., 19, pp. 279–330, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  3. Brockett, R.W., “Lie algebras and Lie groups in control theory,” in Geometric Methods in System Theory (D.Q. Mayne and R.W. Brockett, eds.), Reidel, Dordrecht, 1973.

    Google Scholar 

  4. Brockett, R.W., “Notes on stochastic processes on manifolds,” in Systems and Control in the Twenty-First Century (C.I. Byrnes et al. eds.), Birkhäuser, Boston, 1997.

    Google Scholar 

  5. Elworthy, K.D., Stochastic Differential Equations on Manifolds, Cambridge University Press, London, 1982.

    MATH  Google Scholar 

  6. Emery, M., Stochastic Calculus in Manifolds, Springer-Verlag, Berlin, 1989.

    MATH  Google Scholar 

  7. Flügge, S., Practical Quantum Mechanics, Vol. 1 and 2, Springer-Verlag, Berlin, 1971.

    Google Scholar 

  8. Hida, T., Brownian Motion, Applications of Math. No. 11, Springer, Berlin, 1980.

    MATH  Google Scholar 

  9. Hsu, E.P., Stochastic Analysis on Manifolds, Graduate Studies in Mathematics, Vol. 38, American Mathematical Society, Providence, RI, 2002.

    MATH  Google Scholar 

  10. Ikeda, N., Watanabe, S., Stochastic Differential Equations and Diffusion Processes, 2nd ed., North-Holland, Amsterdam, 1989.

    MATH  Google Scholar 

  11. Itô, K., “Stochastic differential equations in a differentiable manifold,” Nagoya Math. J., 1, pp. 35–47, 1950.

    MATH  MathSciNet  Google Scholar 

  12. Itô, K., “Stochastic differential equations in a differentiable manifold (2),” Sci. Univ. Kyoto Math. Ser. A, 28, pp. 81–85, 1953.

    MATH  Google Scholar 

  13. Itô, K., McKean, H.P., Jr., Diffusion Processes and their Sample Paths, Springer, Berlin, 1996.

    MATH  Google Scholar 

  14. Kunita, H., Stochastic Flows and Stochastic Differential Equations, Cambridge University Press, London, 1997.

    MATH  Google Scholar 

  15. Lewis, J., “Brownian motion on a submanifold of Euclidean space,” Bull. London Math. Soc., 18, pp. 616–620, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  16. McKean, H., Jr., Singer, I.M., “Curvature and the eigenvalues of the Laplacian,” J. Diff. Geom., 1, pp. 43–69, 1967.

    MATH  MathSciNet  Google Scholar 

  17. McKean, H.P., Jr., “Brownian motions on the 3-dimensional rotation group,” Mem. College Sci. Univ. Kyoto Ser. A, 33, 1, pp. 25–38, 1960.

    MATH  MathSciNet  Google Scholar 

  18. McLachlan, N.W., Theory and Application of Mathieu Functions, Oxford, Clarendon Press, 1951.

    Google Scholar 

  19. Øksendal, B., Stochastic Differential Equations, An Introduction with Applications, 5th ed., Springer, Berlin, 1998.

    Google Scholar 

  20. Orsingher, E., “Stochastic motions on the 3-sphere governed by wave and heat equations,” J. Appl. Prob., 24, pp. 315–327, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  21. Perrin, P.F., “Mouvement Brownien D'un Ellipsoide (I). Dispersion Diélectrique Pour des Molécules Ellipsoidales,” J. Phys. Radium, 7, pp. 497–511, 1934.

    Article  Google Scholar 

  22. Perrin, P.F., “Mouvement Brownien D'un Ellipsoide (II). Rotation Libre et Dépolarisation des Fluorescences. Translation et Diffusion de Molécules Ellipsoidales,” J. Phys. Radium, 7, pp. 1–11, 1936.

    Article  MATH  Google Scholar 

  23. Perrin, P.F., “Étude Mathématique du Mouvement Brownien de Rotation,” Ann. Sci. Éc. Norm. Supér., 45, pp. 1–51, 1928.

    MathSciNet  Google Scholar 

  24. Pinsky, M., “Isotropic transport process on a Riemannian manifold,” TAMS, 218, pp. 353–360, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  25. Pinsky, M., “Can you feel the shape of a manifold with Brownian motion?” in Topics in Contemporary Probability and its Applications, pp. 89–102, (J.L. Snell, ed.), CRC Press, Boca Raton, FL, 1995.

    Google Scholar 

  26. Roberts, P.H., Ursell, H.D., “Random walk on a sphere and on a Riemannian manifold,” Philos. Trans. R. Soc. London, A252, pp. 317–356, 1960.

    Article  MathSciNet  Google Scholar 

  27. Stroock, D.W., An Introduction to the Analysis of Paths on a Riemannian Manifold, Mathematical Surveys and Monographs, Vol. 74, American Mathematical Society, Providence, RI, 2000.

    MATH  Google Scholar 

  28. Wang, Y., Zhou, Y., Maslen, D.K., Chirikjian, G.S., “Solving the phase-noise Fokker–Planck equation using the motion-group Fourier transform,” IEEE Trans. Commun., 54, pp. 868–877, 2006.

    Article  Google Scholar 

  29. Yau, S.-T., “On the heat kernel of a complete Riemannian manifold,” J. Math. Pures Appl., Ser. 9, 57, pp. 191–201, 1978.

    MATH  MathSciNet  Google Scholar 

  30. Yosida, K., “Integration of Fokker–Planck's equation in a compact Riemannian space,” Ark. Mat., 1, Nr. 9, pp. 71–75, 1949.

    Article  MathSciNet  Google Scholar 

  31. Yosida, K., “Brownian motion on the surface of the 3-sphere,” Ann. Math. Stat., 20, pp. 292–296, 1949.

    Article  MathSciNet  Google Scholar 

  32. Yosida, K., “Brownian motion in a homogeneous Riemannian space,” Pacific J. Math., 2, pp. 263–296, 1952.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory S. Chirikjian .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Boston

About this chapter

Cite this chapter

Chirikjian, G.S. (2009). Stochastic Processes on Manifolds. In: Stochastic Models, Information Theory, and Lie Groups, Volume 1. Applied and Numerical Harmonic Analysis. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4803-9_8

Download citation

Publish with us

Policies and ethics