Polytopes and Manifolds

  • Gregory S. Chirikjian
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


This chapter extends the review of geometrical ideas from the previous chapters to include geometrical objects in higher dimensions. These include hyper-surfaces and “ghyper-polyhedra” (or polytopes) in ℝn. A parametric description of an m-dimensional embedded manifold1 in an n-dimensional Euclidean space is of the form x = x(q) where x ε ℝn and q ε ℝm with m ≤ n. If m = n-1, then this is called a hyper-surface. An implicit description of an m-dimensional embedded manifold in ℝn is a system of constraint equations of the form φi(x) = 0 for i = 1,..., n-m. In the context of engineering applications, the two most important differences between the study of two-dimensional surfaces in ℝ3 and m-dimensional embedded manifolds in ℝn are: (1) there is no crossproduct operation for ℝn; and (2) if m ≪ n, it can be more convenient to leave behind Rn and describe the manifold intrinsically. For these reasons, modern mathematical concepts such as differential forms and coordinate-free differential geometry can be quite powerful.


Riemannian Manifold Tangent Space Convex Body Klein Bottle Coordinate Chart 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham, R., Marsden, J.E., Ratiu, T., Manifolds, Tensor Analysis, and Applications, 2nd ed., Applied Mathematical Sciences 75, Springer, New York, 1988.MATHGoogle Scholar
  2. 2.
    Allendoerfer, C.B., “The Euler number of a Riemannian manifold,” Amer. J. Math., 62, pp. 243–248, 1940.CrossRefMathSciNetGoogle Scholar
  3. 3.
    Allendoerfer, C.B., Weil, A., “The Gauss–Bonnet theorem for Riemannian polyhedra,” Trans. Amer. Math. Soc., 53, pp. 101–129, 1943.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Apéry, F., Models of the Real Projective Plane: Computer Graphics of Steiner and Boy Surfaces, Vieweg, Braunschweig, 1987.MATHGoogle Scholar
  5. 5.
    Berger, M., A Panoramic View of Riemannian Geometry, Springer, New York, 2003.MATHGoogle Scholar
  6. 6.
    Bishop, R.L., Goldberg, S.I., Tensor Analysis on Manifolds, Dover, New York, 1980. (originally MacMillan, 1968).Google Scholar
  7. 7.
    Bloch, A.M., Baillieul, J., Crouch, P., Marsden, J., Nonholonomic Mechanics and Control, Springer, New York, 2007.Google Scholar
  8. 8.
    Bobenko, A.I., Schröder, P., Sullivan, J.M., Ziegler, G.M., eds., Discrete Differential Geometry, Oberwolfach Seminars, Vol. 38, Birkhäuser, Basel, 2008.Google Scholar
  9. 9.
    Boothby, W.M., An Introduction to Differentiable Manifolds and Riemannian Geometry, Academic Press, New York, 1975.MATHGoogle Scholar
  10. 10.
    Bott, R., Tu, L.W., Differential Forms in Algebraic Topology, Springer, New York, 1982.MATHGoogle Scholar
  11. 11.
    Bullo, F., Lewis, A.D., Geometric Control of Mechanical Systems: Modeling, Analysis, and Design for Simple Mechanical Control Systems, Springer, New York, 2004.Google Scholar
  12. 12.
    Burke, W.L., Applied Differential Geometry, Cambridge University Press, London, 1985.MATHGoogle Scholar
  13. 13.
    Cartan, H., Differential Forms, Hermann, Paris; Houghton Mifflin, Boston, 1970.MATHGoogle Scholar
  14. 14.
    Charlap, L.S., Bieberbach Groups and Flat Manifolds, Springer-Verlag, New York, 1986.MATHGoogle Scholar
  15. 15.
    Chavel, I., Eigenvalues in Riemannian Geometry, Academic Press, Orlando, FL, 1984.MATHGoogle Scholar
  16. 16.
    Chern, S.-S., “A simple intrinsic proof of the Gauss–Bonnet formula for closed Riemannian manifolds,” Ann. Math., 45, pp. 747–752, 1944.CrossRefMathSciNetGoogle Scholar
  17. 17.
    Chirikjian, G.S., “The stochastic elastica and excluded-volume perturbations of DNA conformational ensembles,” Int. J. Non-Linear Mech., 43, pp. 1108–1120, 2008.CrossRefGoogle Scholar
  18. 18.
    Chirikjian, G.S., Kyatkin, A.B., Engineering Applications of Noncommutative Harmonic Analysis, CRC Press, Boca Raton, FL, 2001.MATHGoogle Scholar
  19. 19.
    Darling, R.W.R., Differential Forms and Connections, Cambridge University Press, London, 1994.MATHGoogle Scholar
  20. 20.
    do Carmo, M.P., Riemannian Geometry, Birkhäuser, Boston, 1992.MATHGoogle Scholar
  21. 21.
    Farmer, D.W., Groups and Symmetry, American Mathematical Society, Providence, RI, 1996.Google Scholar
  22. 22.
    Fenchel, W., “On total curvatures of Riemannian manifolds: I,” J. London Math. Soc., 15, pp. 15–22, 1940.MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Flanders, H., Differential Forms with Applications to the Physical Sciences, Dover, New York, 1989.MATHGoogle Scholar
  24. 24.
    Fukuda, K., Prodon, A., “Double description method revisited,” in Combinatorics and Computer Science: 8th Franco-Japanese and 4th Franco-Chinese Conference, Brest, France, July 3–5, 1995: Selected Papers, Vol. 112, M. Deza, R. Euler, I. Manoussakis, R. Euler, I. Manoussakis, eds., Lecture Notes in Computer Science, Springer, New York, 1996. For software see:∼fukuda/cdd_home/index.html Google Scholar
  25. 25.
    Gruber, P.M., Convex and Discrete Geometry, Springer-Verlag, Berlin, 2007.MATHGoogle Scholar
  26. 26.
    Grünbaum, B., Convex Polytopes, 2nd ed., Springer, New York, 2003.Google Scholar
  27. 27.
    Guggenheimer, H.W., Differential Geometry, Dover, New York, 1977.MATHGoogle Scholar
  28. 28.
    Guibas, L., Ramshaw, L., Stolfi, J., “A kinetic framework for computational geometry,” 24th Annual Symposium on Foundations of Computer Science, 7–9 November 1983, Tucson, AZ, pp. 100–111, 1983.Google Scholar
  29. 29.
    Guillemin, V., Pollack, A., Differential Topology, Prentice-Hall, Englewood Cliffs, NJ, 1974.MATHGoogle Scholar
  30. 30.
    Hadwiger, H., Altes und Neues über Konvexe Körper, Birkhäuser Verlag, Basel, 1955.MATHGoogle Scholar
  31. 31.
    Hamilton, R.S., “Three-manifolds with positive Ricci curvature,” J. Diff. Geom., 17, pp. 255–306, 1982.MATHMathSciNetGoogle Scholar
  32. 32.
    Hammond, C., The Basics of Crystallography and Diffraction, Oxford University Press, Oxford, 1997.Google Scholar
  33. 33.
    Hopf, H., “Über die curvatura integra geschlossener Hyperflächen,” Math. Ann., 95, pp. 340–376, 1925.CrossRefMathSciNetGoogle Scholar
  34. 34.
    Hopf, H., “Über die Abbildungen der 3-Sphäre auf die Kugelfläche,” Math. Ann., 104, pp. 637–665, 1931.CrossRefMathSciNetGoogle Scholar
  35. 35.
    Johnson, C.K., Burnett, M.N., Dunbar, W.D., “Crystallographic topology and its applications,” in Crystallographic Computing 7: Macromolecular Crystallographic Data, edited by P.E. Bourne and K.D. Watenpaugh, Oxford University Press, Oxford, 1997. Scholar
  36. 36.
    Kavraki, L.E., “Computation of configuration-space obstacles using the fast Fourier transform,” IEEE Trans. Robotics Automation, 11, pp. 408–413, 1995.CrossRefGoogle Scholar
  37. 37.
    Klein, F., Vorlesungen über nicht-euklidische Geometrie, Springer-Verlag, New York, 1968.MATHGoogle Scholar
  38. 38.
    Kobayashi, S., Nomizu, K., Foundations of Differential Geometry Vols. I and II, John Wiley & Sons, New York, 1963 (Wiley Classics Library Edition 1996).Google Scholar
  39. 39.
    Ladd, M.F.C., Symmetry in Molecules and Crystals, Ellis Horwood/John Wiley & Sons, New York, 1989.Google Scholar
  40. 40.
    Lang, S., Fundamentals of Differential Geometry, Springer, New York, 1999.MATHGoogle Scholar
  41. 41.
    Lattman, E.E., Loll, P.J., Protein Crystallography: A Concise Guide, The Johns Hopkins University Press, Baltimore, 2008.Google Scholar
  42. 42.
    Lawrence, J., “A short proof of Euler's relation for convex polytopes,” Can. Math. Bull., 40, pp. 471–474, 1997.MATHMathSciNetGoogle Scholar
  43. 43.
    Lee, J.M., Riemannian Manifolds: An Introduction to Curvature, Springer, New York, 1997.MATHGoogle Scholar
  44. 44.
    Lockwood, E.H., MacMillan, R.H., Geometric Symmetry, Cambridge University Press, London, 1978.MATHGoogle Scholar
  45. 45.
    Lovelock, D., Rund, H., Tensors, Differential Forms, and Variational Principles, Dover, New York, 1989.Google Scholar
  46. 46.
    McPherson, A., Introduction to Macromolecular Crystallography, John Wiley & Sons, Hoboken, NJ, 2003.Google Scholar
  47. 47.
    Montesinos, J.M., Classical Tessellations and Three-Manifolds, Springer-Verlag, Berlin, 1987.MATHGoogle Scholar
  48. 48.
    Morgan, F., Riemannian Geometry : A Beginner's Guide, 2nd ed., A.K. Peters, Wellesley, MA, 1998.MATHGoogle Scholar
  49. 49.
    Mukherjee, A., Topics in Differential Topology, Hindustan Book Agency, New Delhi, 2005.MATHGoogle Scholar
  50. 50.
    Nash, J., “The embedding theorem for Riemannian manifolds,” Ann. Math., 63, pp. 20–63, 1956.CrossRefMathSciNetGoogle Scholar
  51. 51.
    Oprea, J., Differential Geometry and Its Applications, 2nd ed., The Mathematical Association of America, Washington, DC, 2007.MATHGoogle Scholar
  52. 52.
    Perelman, G., “The entropy formula for the Ricci flow and its geometric applications,” (2002). Updated Feb 1, 2008.
  53. 53.
    Rhodes, G., Crystallography Made Crystal Clear, 2nd ed., Academic Press, San Diego, CA, 2000.Google Scholar
  54. 54.
    Rosenberg, S., The Laplacian on a Riemannian Manifold: An Introduction to Analysis on Manifolds (London Mathematical Society Student Texts, No. 31), Cambridge University Press, London, 1997.MATHGoogle Scholar
  55. 55.
    Satake, I., “On a generalization of the notion of a manifold,” Proc. Nat. Acad. Sci. USA, 42, pp. 359–363, 1956.MATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    Schreiber, M., Differential Forms: A Heuristic Introduction, Universitext, Springer-Verlag, New York, 1977.MATHGoogle Scholar
  57. 57.
    Scott, P., “The geometries of 3-manifolds,” Bull. London Math. Soc., 15, pp. 401–487, 1983.MATHCrossRefMathSciNetGoogle Scholar
  58. 58.
    Spivak, M., A Comprehensive Introduction to Differential Geometry, Vols. 1, 2, Publish or Perish, Houston, TX, 1970.Google Scholar
  59. 59.
    Spivak, M., Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus, HarperCollins, New York, 1965.MATHGoogle Scholar
  60. 60.
    Steenrod, N., The Topology of Fibre Bundles, Princeton University Press, Princeton, NJ, 1951 (reprinted 1999).MATHGoogle Scholar
  61. 61.
    Thurston, W.P., Three-Dimensional Geometry and Topology, Vol. 1, (edited by S. Levy), Princeton University Press, Princeton, NJ, 1997.Google Scholar
  62. 62.
    Topping, P., Lectures on the Ricci Flow, London Mathematical Society Lecture Notes 325, Cambridge University Press, London, 2006.MATHGoogle Scholar
  63. 63.
    Tu, L.W., An Introduction to Manifolds, Springer, New York, 2008.MATHGoogle Scholar
  64. 64.
    Warner, F.W., Foundations of Differentiable Manifolds and Lie Groups, Springer-Verlag, New York, 1983.MATHGoogle Scholar
  65. 65.
    Weeks, J.R., The Shape of Space, Marcel Dekker, New York, 1985.MATHGoogle Scholar
  66. 66.
    Weinstein, A., “Groupoids: Unifying internal and external symmetry,” Not. Amer. Math. Soc., 43, pp. 744–752, 1996.MATHGoogle Scholar
  67. 67.
    Whitney, H., “Differentiable manifolds,” Ann. Math., 37, pp. 645–680, 1936.CrossRefMathSciNetGoogle Scholar
  68. 68.
    Willmore, T.J., Total Curvature in Riemannian Geometry, Ellis Horwood/John Wiley & Sons, New York, 1982.MATHGoogle Scholar
  69. 69.
    Yano, K., Bochner, S., Curvature and Betti Numbers, Annals of Mathematics Studies 32, Princeton University Press, Princeton, NJ, 1953.MATHGoogle Scholar
  70. 70.
    Ziegler, G.M., Lectures on Polytopes, Springer, New York, 1995.MATHGoogle Scholar

Copyright information

© Birkhäuser Boston 2009

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations