Homogeneous Domination and the Decentralized Control Problem for Nonlinear System Stabilization

  • Jason Polendo
  • Chunjiang Qian
  • Cheryl B. Schrader
Part of the Systems & Control: Foundations & Applications book series (SCFA)


This chapter gives an overview of constructive techniques for nonlinear dynamic system stabilization in the face of uncertainties and limited information from sensors. Such techniques have ultimately allowed for a loosening of the restrictions on the classes of nonlinear systems that could be systematically stabilized. The schemes discussed herein have the distinct commonality of dominating and thereby cancelling the undesirable effects of additive perturbations. Output feedback stabilization of highly nonlinear systems is discussed first, with the specific decentralized control problem setting then considered in addition to the output feedback issue. The schemes outlined in this chapter can be found in their entirety in several papers by the authors, with specific publications cited where applicable.


Nonlinear System Lyapunov Function Output Feedback Observer Gain Output Feedback Controller 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [BR01]
    A. Bacciotti and L. Roiser. Liapunov Functions and Stability in Control Theory, volume 267 of Lecture Notes in Control and Information Sciences. Springer, New York, 2001.Google Scholar
  2. [BK84]
    W. Bachmann and D. Konik. On stabilization of decentralized dynamic output feedback systems. Systems Control Lett., 5(2):89–95, 1984.MathSciNetMATHCrossRefGoogle Scholar
  3. [Be98]
    G. Besancon. State affine systems and obsever based control. NOLCOS, 2:399–404, 1998.Google Scholar
  4. [BZ83]
    D. Bestle and M. Zeitz. Canonical form observer design for non-linear time-variable systems. Internat. J. Control, 38(2):419–431, August 1983.MATHCrossRefGoogle Scholar
  5. [CH04]
    Z. Chen and J. Huang. Global output feedback stabilization for uncertain nonlinear systems with output dependent incremental rate. In Proceedings of 2004 American Control Conference, 2004.Google Scholar
  6. [Da89]
    Z. Da-Zhong. Decentralized output feedback stabilization for a class of nonlinear interconnected systems. IEEE Trans. Automat. Control, 34(12):1297–1300, 1989.MATHCrossRefGoogle Scholar
  7. [Dav74]
    E. Davison. The decentralized stabilization and control of a class of unknown non-linear time-varying systems. Automatica—J. IFAC, 10:309–316, 1974.MathSciNetMATHCrossRefGoogle Scholar
  8. [DMK90]
    W. P. Dayawansa, C. F. Martin, and G. Knowles. Asymptotic stabilization of a class of smooth two-dimensional systems. SIAM J. Control Optim., 28(6):1321–1349, 1990.MathSciNetMATHCrossRefGoogle Scholar
  9. [Day92]
    W. P. Dayawansa. Recent advances in the stabilization problem for low dimensional systems. In Proceedings of 1992 IFAC NOLCOS, pages 1–8, 1992.Google Scholar
  10. [FQC05]
    M. Frye, C. Qian, and R. Colgren. Decentralized control of large-scale uncertain nonlinear systems by linear output feedback. Communications in Information and Systems, 4(3):191–210, 2005.MathSciNetGoogle Scholar
  11. [GHO92]
    J.-P. Gauthier, H. Hammouri, and S. Othman. A simple observer for nonlinear systems applications to bioreactors. IEEE Trans. Automat. Control, 37(6):875–880, 1992.MathSciNetMATHCrossRefGoogle Scholar
  12. [Ha67]
    W. Hahn. Stability of Motion. Translated from the German manuscript by Arne P. Baartz. Die Grundlehren der mathematischen Wissenschaften, Band 138. Springer-Verlag, New York, 1967.Google Scholar
  13. [Hc91]
    H. Hermes. Homogeneous coordinates and continuous asymptotically stabilizing feedback controls. In Differential Equations (Colorado Springs, CO, 1989), volume 127 of Lecture Notes in Pure and Appl. Math., pages 249–260. Dekker, New York, 1991.Google Scholar
  14. [Io86]
    P. A. Ioannou. Decentralized adaptive control of interconnected systems. IEEE Trans. Automat. Control, 31(4):291–298, 1986.MathSciNetMATHCrossRefGoogle Scholar
  15. [Is95]
    A. Isidori. Nonlinear Control Systems. Communications and Control Engineering, Series third edition. Springer-Verlag, Berlin, 1995.Google Scholar
  16. [JK97]
    S. Jain and F. Khorrami. Decentralized adaptive output feedback design for large-scale nonlinear systems. IEEE Trans. Automat. Control, 42(5):729–735, 1997.MathSciNetMATHCrossRefGoogle Scholar
  17. [Ji00]
    Z.-P. Jiang. Decentralized and adaptive nonlinear tracking of large-scale systems via output feedback. IEEE Trans. Automat. Control, 45(11):2122–2128, 2000.MathSciNetMATHCrossRefGoogle Scholar
  18. [Ka89]
    M. Kawski. Stabilization of nonlinear systems in the plane. Systems Control Lett., 12(2):169–175, 1989.MathSciNetMATHCrossRefGoogle Scholar
  19. [Ka90]
    M. Kawski. Homogeneous stabilizing feedback laws. Control Theory Adv. Tech., 6(4):497–516, 1990.MathSciNetGoogle Scholar
  20. [Kh92]
    H. K. Khalil. Nonlinear Systems. Macmillan Publishing Company, New York, 1992.Google Scholar
  21. [Ks82]
    H. K. Khalil and A. Saberi. Decentralized stabilization of nonlinear interconnected systems using high-gain feedback. IEEE Trans. Automat. Control, 27(1):265–268, 1982.MathSciNetMATHCrossRefGoogle Scholar
  22. [KS87]
    H. K. Khalil and A. Saberi. Adaptive stabilization of a class of nonlinear systems using high-gain feedback. IEEE Trans. Automat. Control, 32(11):1031–1035, 1987.MathSciNetMATHCrossRefGoogle Scholar
  23. [KI83]
    A. J. Krener and A. Isidori. Linearization by output injection and nonlinear observers. Systems Control Lett., 3(1):47–52, 1983.MathSciNetMATHCrossRefGoogle Scholar
  24. [KR85]
    A. J. Krener and W. Respondek. Nonlinear observers with linearizable error dynamics. SIAM J. Control Optim., 23(2):197–216, 1985.MathSciNetMATHCrossRefGoogle Scholar
  25. [KX02]
    A. J. Krener and M. Xiao. Nonlinear observer design in the Siegel domain. SIAM J. Control Optim., 41(3):932–953, 2002.MathSciNetCrossRefGoogle Scholar
  26. [KKK95]
    M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic. Nonlinear and Adaptive Control Design. John Wiley, New York, 1995.Google Scholar
  27. [Li84]
    A. Linnemann. Decentralized control of dynamically interconnected systems. IEEE Trans. Automat. Control, 29(11):1052–1054, 1984.MATHCrossRefGoogle Scholar
  28. [MT91]
    R. Marino and P. Tomei. Dynamic output feedback linearization and global stabilization. Systems Control Lett., 17(2):115–121, 1991.MathSciNetMATHCrossRefGoogle Scholar
  29. [MPD94]
    F. Mazenc, L. Praly, and W. P. Dayawansa. Global stabilization by output feedback: examples and counterexamples. Systems Control Lett., 23(2):119–125, 1994.MathSciNetMATHCrossRefGoogle Scholar
  30. [Po06]
    J. Polendo. Global Synthesis of Highly Nonlinear Dynamic Systems with Limited and Uncertain Information. The University of Texas at San Antonio, Ph.D. Dissertation, 2006.Google Scholar
  31. [Po05]
    J. Polendo and C. Qian. A generalized framework for global output feedback stabilization of genuinely nonlinear systems. In IEEE Conference on Decision and Control, pages 2646–2651, 2005.Google Scholar
  32. [PQ07a]
    J. Polendo and C. Qian. Decentralized output feedback control of interconnected systems with high-order nonlinearities. In Proceedings of 2007 American Control Conference, pages 1479–1484, 2007.Google Scholar
  33. [PQ07b]
    J. Polendo and C. Qian. A generalized framework for global output feedback stabilization of inherently nonlinear systems with uncertainties. In S. Tang and J. Yong, editors, Control Theory and Related Topics. World Scientific, Singapore, 2007.Google Scholar
  34. [PQ07c]
    J. Polendo and C. Qian. A generalized homogeneous domination approach for global stabilization of inherently nonlinear systems via output feedback. International Journal of Robust and Nonlinear Control, 17(7):605–629, May 2007.MathSciNetMATHCrossRefGoogle Scholar
  35. [PJ03]
    L. Praly and Z. Jiang. On global output feedback stabilization of uncertain nonlinear systems. In Proceedings of the 42nd IEEE Conference on Decision and Control, 2003.Google Scholar
  36. [Qi05]
    C. Qian. A homogeneous domination approach for global output feedback stabilization of a class of nonlinear systems. In Proceedings of 2005 American Control Conference, June 2005.Google Scholar
  37. [QL01]
    C. Qian and W. Lin. A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Trans. Automat. Control, 46(7):1061–1079, 2001.MathSciNetMATHCrossRefGoogle Scholar
  38. [QL02a]
    C. Qian and W. Lin. Output feedback control of a class of nonlinear systems: a nonseparation principle paradigm. IEEE Trans. Automat. Control, 47(10):1710–1715, 2002.MathSciNetCrossRefGoogle Scholar
  39. [QL02b]
    C. Qian and W. Lin. Smooth output feedback stabilization of planar systems without controllable/observable linearization. IEEE Trans. Automat. Control, 47(12):2068–2073, 2002.MathSciNetCrossRefGoogle Scholar
  40. [QL04]
    C. Qian and W. Lin. Recursive observer design and nonsmooth output feedback stabilization of inherently nonlinear systems. In Proc. of 43rd IEEE Conference on Decision and Control, pages 4927–4932, Atlantis, Bahamas, 2004.Google Scholar
  41. [SK85]
    A. Saberi and H. K. Khalil. Decentralized stabilization of interconnected systems using output feedback. Internat. J. Control, 41(6):1461–1475, 1985.MathSciNetMATHCrossRefGoogle Scholar
  42. [Ts91]
    J. Tsinias. A theorem on global stabilization of nonlinear systems by linear feedback. Systems Control Lett., 17(5):357–362, 1991.MathSciNetMATHCrossRefGoogle Scholar
  43. [YL04]
    B. Yang and W. Lin. Homogeneous observers, iterative design, and global stabilization of high-order nonlinear systems by smooth output feedback. IEEE Trans. Automat. Control, 49(7):1069–1080, July 2004.MathSciNetCrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jason Polendo
    • 1
  • Chunjiang Qian
    • 2
  • Cheryl B. Schrader
    • 3
  1. 1.Southwest Research Institute,‡San AntonioUSA
  2. 2.Dept. of Electrical & Computer EngineeringUniversity of Texas at San Antonio,§San AntonioUSA
  3. 3.Boise State University1910 University Dr., BoiseUSA

Personalised recommendations