Semi-global stabilization in the recoverable region: properties and computation of recoverable regions

  • Ali Saberi
  • Anton A. Stoorvogel
  • Peddapullaiah Sannuti
Part of the Systems & Control: Foundations & Applications book series (SCFA)


As in Chap. 8, we consider in this chapter constraints on state as well as input variables. As discussed in detail in Chap. 8, if the given system has at least one of the constraint invariant zeros in the open right-half plane (continuous time) or outside the unit disc (discrete time), that is, if it has non-minimum-phase constraints, then neither semi-global nor global stabilization in the admissible set is possible. Thus, whenever we have non-minimum-phase constraints, the semi-global stabilization is possible only in a certain proper subset of the admissible set. This gives rise to the notion of a recoverable region (set), sometimes also called the domain of null controllability or null controllable region. Generally speaking, for a system with constraints, an initial state is said to be recoverable if it can be driven to zero by some control without violating the constraints on the state and input. We can appropriately term the set of all recoverable initial conditions as the recoverable region. The recoverable region is thus indeed the maximum achievable domain of attraction in stabilizing linear systems subject to non-minimum-phase constraints. The goal of stabilization is to design a feedback, say u = f(x), such that the constraints are not violated and moreover the region of attraction of the equilibrium point of the closed-loop system is equal to the recoverable region or an arbitrarily large subset contained within the recoverable region. Such a stabilization is termed as the semi-global stabilization in the recoverable region, and this is what we pursue in this chapter.


State Feedback Controller Input Constraint Measurement Feedback Invariant Zero Static State Feedback 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 3.
    J.P. Aubin, Viability theory, Birkhäuser, 1991.Google Scholar
  2. 4.
    J.P. Aubin and H. Frankowska, Set-valued analysis, Birkhäuser, 1990.Google Scholar
  3. 9.
    G. Bitsoris, “On the linear decentralized constrained regulation problem of discrete-time dynamical systems”, Information and Decision Technologies, 14(3), 1988, pp. 229–239.MathSciNetMATHGoogle Scholar
  4. 10.
    F. Blanchini, “Set invariance in control”, Automatica, 35(11), 1999, pp. 1747–1769.MathSciNetMATHCrossRefGoogle Scholar
  5. 11.
    F. Blanchini and S. Miani, “Constrained stabilization of continuous-time linear systems”, Syst. & Contr. Letters, 28(2), 1996, pp. 95–102.MathSciNetMATHCrossRefGoogle Scholar
  6. 12.
    ________, “Constrained stabilization via smooth Lyapunov functions”, Syst. & Contr. Letters, 35(3), 1998, pp. 155–163.MathSciNetMATHCrossRefGoogle Scholar
  7. 26.
    ________, “On the stabilization of linear discrete-time systems subject to input saturation”, Syst. & Contr. Letters, 36(3), 1999, pp. 241–244.MATHCrossRefGoogle Scholar
  8. 27.
    ________, “On the constrained asymptotic stabilizability of unstable linear discrete time systems via linear feedback”, in American Control Conference, Arlington, VA, 2001, pp. 4926–4929.Google Scholar
  9. 30.
    M. Cwikel and P. Gutman, “Convergence of an algorithm to find maximal state constraint sets for discrete-time linear dynamical systems with bounded controls and states”, IEEE Trans. Aut. Contr., 31(5), 1986, pp. 457–459.MathSciNetMATHCrossRefGoogle Scholar
  10. 33.
    A. Dontchev and F. Lempio, “Difference methods for differential inclusions: a survey”, SIAM Review, 34(2), 1992, pp. 263–294.MathSciNetMATHCrossRefGoogle Scholar
  11. 36.
    I. Flügge-Lotz, Discontinuous and optimal control, McGraw-Hill, New York, 1968.Google Scholar
  12. 39.
    ________, Ed., Nonlinear stochastic control systems, Taylor and Francis, London, 1970.MATHGoogle Scholar
  13. 41.
    J.E. Gayek, “A survey of techniques for approximating reachable and controllable sets”, in Proc. 30th CDC, Brighton, England, 1991, pp. 1724–1729.Google Scholar
  14. 49.
    T. Hu, Z. Lin, and L. Qiu, “Stabilization of exponentially unstable linear systems with saturating actuators”, IEEE Trans. Aut. Contr., 45(6), 2001, pp. 973–979.MathSciNetCrossRefGoogle Scholar
  15. 65.
    E.B. Lee and L. Markus, Foundations of optimal control theory, John Wiley & Sons, New York, 1967.MATHGoogle Scholar
  16. 66.
    J.L. LeMay, “Recoverable and reachable zones for control systems with linear plants and bounded controller outputs”, IEEE Trans. Aut. Contr., 9(4), 1964, pp. 346–354.MathSciNetCrossRefGoogle Scholar
  17. 99.
    E. Michael, “Continuous selections I”, Annals of Mathematics, 63(2), 1956, pp. 361–381.MathSciNetMATHCrossRefGoogle Scholar
  18. 105.
    M. Nagumo, “Über die Lage der Integralkurven gewöhnlicher Differentialgleichungen”, Proc. Phys. Math. Soc. Japan, 24, 1942, pp. 551–559.MathSciNetMATHGoogle Scholar
  19. 114.
    L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, and E.R. Mishchenko, The mathematical theory of optimal processes, Wiley, New York, 1962.MATHGoogle Scholar
  20. 119.
    R.T. Rockafellar, Convex analysis, Princeton University Press, Princeton, 1970.MATHGoogle Scholar
  21. 121.
    E.P. Ryan, Optimal relay and saturating control system synthesis, Peter Peregrinus Ltd., 1982.Google Scholar
  22. 158.
    J. Stephan, M. Bodson, and J. Lehoczky, “Properties of recoverable sets for systems with input and state constraints”, in American Control Conference, Seattle, WA, 1995, pp. 3912–3913.Google Scholar
  23. 159.
    ________, “Calculation of recoverable sets for systems with input and state constraints”, Opt. Control Appl. & Meth., 19(4), 1998, pp. 247–269.MathSciNetCrossRefGoogle Scholar
  24. 167.
    ________, “Properties of recoverable region and semi-global stabilization in recoverable region for linear systems subject to constraints”, Automatica, 40(9), 2004, pp. 1481–1494.Google Scholar
  25. 187.
    M. Vassilaki, J.C. Hennet, and G. Bitsoris, “Feedback control of linear discrete-time systems under state and control constraints”, Int. J. Contr., 47(6), 1988, pp. 1727–1735.MathSciNetMATHCrossRefGoogle Scholar
  26. 197.
    X. Wang, A. Saberi, A.A. Stoorvogel, S. Roy, and P. Sannuti, “Computation of the recoverable region and stabilization problem in the recoverable region for discrete-time systems”, Int. J. Contr., 82(10), 2009, pp. 1870–1881.MathSciNetMATHCrossRefGoogle Scholar
  27. 211.
    C.A. Yfoulis, A. Muir, and P.E. Wellstead, “A new approach for estimating controllable and recoverable regions with state and control constraints”, Int. J. Robust & Nonlinear Control, 12(7), 2002, pp. 561–589.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Ali Saberi
    • 1
  • Anton A. Stoorvogel
    • 2
  • Peddapullaiah Sannuti
    • 3
  1. 1.School of Electrical Engineering and Computer ScienceWashington State UniversityPullmanUSA
  2. 2.Department of Electrical Engineering, Mathematics, and Computer ScienceUniversity of TwenteEnschedeThe Netherlands
  3. 3.Department of Electrical and Computer EngineeringRutgers UniversityPiscatawayUSA

Personalised recommendations