Advertisement

A special coordinate basis (SCB) of linear multivariable systems

  • Ali Saberi
  • Anton A. Stoorvogel
  • Peddapullaiah Sannuti
Chapter
Part of the Systems & Control: Foundations & Applications book series (SCFA)

Abstract

What is called the special coordinate basis (SCB) of a multivariable linear time-invariant system plays a dominant role throughout this book; hence, a clear understanding of it is essential. The purpose of this chapter is to recall the SCB as well as its properties pertinent to this book. The SCB originated in [ 138, 140, 141] and was crystallized for strictly proper systems in [139] and for proper systems in [132]. Our presentation of SCB here omits all the proofs that can be found in the literature.

Keywords

Zero Dynamic Proper System Zero Structure Invariant Zero Proper Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 18.
    B.M. Chen, Robust and H control, Communication and Control Engineering Series, Springer Verlag, 2000.Google Scholar
  2. 19.
    B.M. Chen, Z. Lin, and Y. Shamash, Linear systems theory: a structural decomposition approach, Birkhäuser, Boston, 2004.MATHGoogle Scholar
  3. 20.
    B. M. Chen, A. Saberi, and P. Sannuti, “Explicit expressions for cascade factorization of general nonminimum phase systems”, IEEE Trans. Aut. Contr., 37(3), 1992, pp. 358–363.MathSciNetCrossRefGoogle Scholar
  4. 29.
    C. Commault and J.M. Dion, “Structure at infinity of linear multivariable systems: a geometric approach”, IEEE Trans. Aut. Contr., 27(3), 1982, pp. 693–696.MathSciNetMATHCrossRefGoogle Scholar
  5. 32.
    C. Canudas de Wit and P. Lischinsky, “Adaptive friction compensation with partially known dynamic friction model”, Int. J. Adapt. Contr. and Sign. Proc., 11(1), 1997, pp. 65–80.MathSciNetMATHCrossRefGoogle Scholar
  6. 40.
    F.R. Gantmacher, The theory of matrices, Chelsea, New York, 1959.MATHGoogle Scholar
  7. 42.
    H.F. Grip and A. Saberi, “Structural decomposition of linear multivariable systems using symbolic computations”, Int. J. Contr., 83(7), 2010, pp. 1414–1426.MathSciNetMATHCrossRefGoogle Scholar
  8. 50.
    Y.S. Hung and A.G.J. MacFarlane, “On the relationships between the unbounded asymptote behavior of multivariable root loci, impulse response and infinite zeros”, Int. J. Contr., 34(1), 1981, pp. 31–69.MathSciNetMATHCrossRefGoogle Scholar
  9. 57.
    N. Karcanias and B. Kouvaritakis, “The output zeroing problem and its relationship to the invariant zero structure: a matrix pencil approach”, Int. J. Contr., 30(2), 1979, pp. 395–415.MathSciNetMATHCrossRefGoogle Scholar
  10. 60.
    U. Kiencke and L. Nielsen, Automotive control systems: for engine, driveline and vehicle, Springer Verlag, Berlin, 2000.Google Scholar
  11. 79.
    Z. Lin, A. Saberi, and B.M. Chen, Linear systems toolbox, A.J. Controls Inc., Seattle, WA, 1991. Washington State Univ. Techn. Report No. EE/CS 0097.Google Scholar
  12. 80.
    ________, “Linear systems toolbox: system analysis and control design in the Matlab environment”, in Proc. 1st IEEE Conf. Control Appl., Dayton, OH, 1992, pp. 659–664.Google Scholar
  13. 91.
    X. Liu, B.M. Chen, and Z. Lin, “Linear systems toolkit in Matlab: structural decompositions and their applications”, Journal of Control Theory and Applications, 3(3), 2005, pp. 287–294.MathSciNetMATHCrossRefGoogle Scholar
  14. 92.
    A.G.J. MacFarlane and N. Karcanias, “Poles and zeros of linear multivariable systems: a survey of the algebraic, geometric and complex-variable theory”, Int. J. Contr., 24(1), 1976, pp. 33–74.MathSciNetMATHCrossRefGoogle Scholar
  15. 101.
    T. Mita, “On maximal unobservable subspace, zeros, and their applications”, Int. J. Contr., 25(6), 1977, pp. 885–899.MathSciNetMATHCrossRefGoogle Scholar
  16. 103.
    A.S. Morse, “Structural invariants of linear multivariable systems”, SIAM J. Contr. & Opt., 11(3), 1973, pp. 446–465.MathSciNetMATHCrossRefGoogle Scholar
  17. 104.
    P. Moylan, “Stable inversion of linear systems”, IEEE Trans. Aut. Contr., 22(1), 1977, pp. 74–78.MathSciNetMATHCrossRefGoogle Scholar
  18. 110.
    D.H. Owens, “Invariant zeros of multivariable systems: a geometric analysis”, Int. J. Contr., 26(4), 1977, pp. 537–548.MathSciNetMATHCrossRefGoogle Scholar
  19. 111.
    H.K. Ozcetin, A. Saberi, and P. Sannuti, “Special coordinate basis for order reduction of linear multivariable systems”, Int. J. Contr., 52(1), 1990, pp. 191–226.MathSciNetMATHCrossRefGoogle Scholar
  20. 112.
    Hans B. Pacejka, Tire and vehicle dynamics, Butterworth-Heinemann, Amsterdam, 2nd Ed., 2006.Google Scholar
  21. 120.
    H. H. Rosenbrock, State-space and multivariable theory, John Wiley, New York, 1970.MATHGoogle Scholar
  22. 122.
    A. Saberi, B.M. Chen, and P. Sannuti, “Theory of LTR for non-minimum phase systems, recoverable targets, and recovery in a subspace. Part 1: analysis”, Int. J. Contr., 53(5), 1991, pp. 1067–1115.MathSciNetMATHCrossRefGoogle Scholar
  23. 123.
    ________, Loop transfer recovery : analysis and design, Springer Verlag, Berlin, 1993.MATHCrossRefGoogle Scholar
  24. 129.
    A. Saberi, H. Ozcetin, and P. Sannuti, “New structural invariants of linear multivariable systems”, Int. J. Contr., 56(4), 1992, pp. 877–900.MathSciNetMATHCrossRefGoogle Scholar
  25. 130.
    A. Saberi and P. Sannuti, “Squaring down by static and dynamic compensators”, IEEE Trans. Aut. Contr., 33(4), 1988, pp. 358–365.MathSciNetMATHCrossRefGoogle Scholar
  26. 131.
    ________, “Observer design for loop transfer recovery and for uncertain dynamical systems”, IEEE Trans. Aut. Contr., 35(8), 1990, pp. 878–897.MathSciNetMATHCrossRefGoogle Scholar
  27. 132.
    ________, “Squaring down of non-strictly proper systems”, Int. J. Contr., 51(3), 1990, pp. 621–629.MATHCrossRefGoogle Scholar
  28. 136.
    ________, Filtering theory: with applications to fault detection, isolation, and estimation, Birkhäuser, Boston, MA, 2007.MATHGoogle Scholar
  29. 138.
    P. Sannuti, “A direct singular perturbation analysis of high-gain and cheap control problems”, Automatica, 19(1), 1983, pp. 41–51.MATHCrossRefGoogle Scholar
  30. 139.
    P. Sannuti and A. Saberi, “Special coordinate basis for multivariable linear systems – finite and infinite zero structure, squaring down and decoupling”, Int. J. Contr., 45(5), 1987, pp. 1655–1704.MathSciNetMATHCrossRefGoogle Scholar
  31. 140.
    P. Sannuti and H.S. Wason, “A singular perturbation canonical form of invertible systems: determination of multivariable root-Loci”, Int. J. Contr., 37(6), 1983, pp. 1259–1286.MathSciNetMATHCrossRefGoogle Scholar
  32. 141.
    ________, “Multiple time-scale decomposition in cheap control problems – singular control”, IEEE Trans. Aut. Contr., 30(7), 1985, pp. 633–644.MathSciNetMATHCrossRefGoogle Scholar
  33. 143.
    S. Sastry, J. Hauser, and P. Kokotovic, “Zero dynamics of regularly perturbed systems may be singularly perturbed”, Syst. & Contr. Letters, 13(4), 1989, pp. 299–314.MathSciNetMATHCrossRefGoogle Scholar
  34. 144.
    C. Scherer, The Riccati inequality and state-space H -optimal control, PhD thesis, Universität Würzburg, 1991.Google Scholar
  35. 152.
    L.M. Silverman, “Inversion of multivariable linear systems”, IEEE Trans. Aut. Contr., 14(3), 1969, pp. 270–276.CrossRefGoogle Scholar
  36. 157.
    E. Soroka and U. Shaked, “The properties of reduced order minimum variance filters for systems with partially perfect measurements”, IEEE Trans. Aut. Contr., 33(11), 1988, pp. 1022–1034.MathSciNetMATHCrossRefGoogle Scholar
  37. 184.
    H.L. Trentelman, A.A. Stoorvogel, and M.L.J. Hautus, Control theory for linear systems, Communication and Control Engineering Series, Springer Verlag, London, 2001.MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Ali Saberi
    • 1
  • Anton A. Stoorvogel
    • 2
  • Peddapullaiah Sannuti
    • 3
  1. 1.School of Electrical Engineering and Computer ScienceWashington State UniversityPullmanUSA
  2. 2.Department of Electrical Engineering, Mathematics, and Computer ScienceUniversity of TwenteEnschedeThe Netherlands
  3. 3.Department of Electrical and Computer EngineeringRutgers UniversityPiscatawayUSA

Personalised recommendations