Combinatorics, Representation Theory and Invariant Theory

The Story of a Ménage à Trois
  • Gian-Carlo Rota
Part of the Modern Birkhäuser Classics book series (MBC)


We will dwell upon the one topic of unquestioned interest and timeliness among mathematicians: gossip. Or rather, to use an acceptable euphemism, we will deal with the history of mathematics.


Representation Theory Bottom Line Invariant Theory Problem Solver Mathematical Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

End Notes

  1. [1]
    Alfred Young, Collected Papers, University of Toronto Press, Toronto, 1970.Google Scholar
  2. [2]
    Hermann Weyl, Gruppentheorieund Quantenmechanik, Hirzel, Leipzig, 1928.Google Scholar
  3. [3]
    Van der Warden, Moderne Algebra, I Teil, 193 7; II Teil, 1940, Springer, Berlin.CrossRefGoogle Scholar
  4. [4]
    Hermann Grassman, Hermann Grossman’s gesammelte mathematische und physikalische Werke, 6 Vol., Druck und Verlag von B.G., Teubner, 1894-1911.Google Scholar
  5. [5]
    Eduard Study, Einleitung in die Theorie der Invarianten linear Trasformationen auf Grund der Vektorenrechnung, I Teil, Vieweg, Braunschweig, 1923.CrossRefGoogle Scholar
  6. [6]
    Giuseppe Peano, Calcolo geometrico secondo l’Ausdehnungslehre di Grassmann, Bocca, Torino, 1888.MATHGoogle Scholar
  7. [7]
    Luther Pfahler Eisenhart, Introduction to Differential Geometry with use of the Tensor Calculus, Princeton University Press, Princeton, 1947.MATHGoogle Scholar
  8. [8]
    Imre Lakatos, Proofs and Refutations, Cambridge University Press, Cambridge, 1976.CrossRefMATHGoogle Scholar
  9. [9]
    Nicholas Bourbaki, Eléments de mathématique. Premièrepartie: algèbre. Chapitre 3, Hermann, Paris, 1948.Google Scholar
  10. [10]
    F. N. David, D. E. Barton, Combinatorial Chance, Griffin, London, 1962.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Gian-Carlo Rota
    • 1
  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations