The Reception of Gödel’s Incompleteness Theorems

  • John W. DawsonJr.


It is natural to invoke geological metaphors to describe the impact and the lasting significance of Gödel’s incompleteness theorems. Indeed, how better to convey the impact of those results-whose effect on Hilbert’s program was so devastating and whose philosophical reverberations have yet to subside- than to speak of tremors and shock waves? The image of shaken foundations is irresistible.


English Translation Formal System Incompleteness Theorem Cardinality Restriction Arithmetical Statement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barzin, M. (1940), Sur la Portée du Théorème de M. Gödel, Académie Royale de Belgique, Bulletin de la Classe des Sciences, Series 5, 26, 230–239.MATHMathSciNetGoogle Scholar
  2. Benacerraf, P. and Putnam, H. (eds.) (1964), Philosophy of Mathematics: Selected Readings, Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  3. Church, A. (1946), Review of Finsler (1944), J. Symbolic Logic 11, 131–132.Google Scholar
  4. Davis, M. (1965), The Undecidable. Raven Press, Hewlett, NY.Google Scholar
  5. Davis, M. (1982), Why Gödel didn’t have Church’s thesis, Inform, and Control 54, 3–24.MATHCrossRefMathSciNetGoogle Scholar
  6. Dawson, J.W., Jr. (1984), Discussion on the foundation of mathematics, Hist. Philos. Logic 5, 111–129.CrossRefMathSciNetGoogle Scholar
  7. Dawson, J.W., Jr. (1985), Completing the Gödel-Zermelo correspondence, Historia Math. 12, 66–70.MATHCrossRefMathSciNetGoogle Scholar
  8. Feferman, S. (1985), Conviction and caution: A scientific portrait of Kurt Gödel, Philos. Natur. 21, 546–562.MathSciNetGoogle Scholar
  9. Finsler, P. (1926), Formale Beweise und die Entscheidbarkeit, Math. Z. 25, 676–682. (English translation in van Heijenoort (1967), pp. 440–445.)MATHCrossRefMathSciNetGoogle Scholar
  10. Finsler, P. (1944), Gibt es unentscheidbare Sätze? Comment. Math. Helv. 16, 310–320.MATHCrossRefMathSciNetGoogle Scholar
  11. Gödel, K. (1930), Einige metamathematische Resultate über Entscheidungsdefinitheit und Widerspruchsfreiheit, Anzeiger der Akademie der Wissenschaft in Wien 67, pp. 214–215. (English translation in van Heijenoort (1967), pp. 595–596.)Google Scholar
  12. Gödel, K. (1930/31), Über Vollständigkeit und Widerspruchsfreiheit, Ergebnisse eines mathematischen Kolloquiums 3, pp. 12–13. (English translation in van Heijenoort (1967), pp. 616–617.)Google Scholar
  13. Gödel, K. (1931), Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, Monatsh. Math. Phys. 38, 173–198. (English translation in van Heijenoort (1967), pp. 596–616.)CrossRefMathSciNetGoogle Scholar
  14. Gödel, K. (1934), On Undecidable Propositions of Formal Mathematical Systems, Mimeographed notes by S.C. Kleene and J.B. Rosser of lectures by Kurt Godel at the Institute for Advanced Study. (As reprinted in Davis (1965), pp. 39–74.)Google Scholar
  15. Gonseth, F. (ed.) (1941), Les Entretiens de Zürich sur les Fondements et la methode des sciences mathématiques, 6–9 Decembre 1938, Leeman, Zurich.Google Scholar
  16. Grattan-Guinness, I. (1979), In memoriam Kurt Gödel: His 1931 correspondence with Zermelo on his incompletability theorem, Historia Math. 6, 294–304.MATHCrossRefMathSciNetGoogle Scholar
  17. Grattan-Guinness, I. (1981), On the development of logics between the Two World Wars, Amer. Math. Monthly 88, 495–509.MATHCrossRefMathSciNetGoogle Scholar
  18. Grelling, K. (1937/38). Gibt es eine Gödelsche Antinomie? Theoria 3, 297–306. Zusätze und Berichtigungen, ibid. 4, 68–69.Google Scholar
  19. Hahn, H. et al. (1931), Diskussion zur Grundlegung der Mathematik, Erkenntnis 2, 135–151. (English translation in Dawson (1984), pp. 116–128.)CrossRefGoogle Scholar
  20. Helmer, O. (1937), Perelman versus Gödel, Mind 46, 58–60.CrossRefGoogle Scholar
  21. Kleene, S.C. (1937a), Review of Perelman (1936), J. Symbolic Logic 2, 40–41.CrossRefGoogle Scholar
  22. Kleene, S.C. (1937b), Review of Helmer (1937), J. Symbolic Logic 2, 48–49.Google Scholar
  23. Kleene, S.C. (1976/78), The Work of Kurt Gödel, J. Symbolic Logic 41, 761–778. Addendum, ibid. 43, 613.CrossRefMathSciNetGoogle Scholar
  24. Kleene, S.C. (1981a), Origins of recursive function theory, Ann. Hist. Comput. 3, 52–67. (Corrigenda in Davis (1982), footnotes 10 and 12.)MATHCrossRefMathSciNetGoogle Scholar
  25. Kleene, S.C. (1981b), The theory of recursive functions, approaching its centennial, Bull. Amer. Math. Soc. (N.S.) 5,1, 43–61.MATHCrossRefMathSciNetGoogle Scholar
  26. Kreisel, G. (1979), Review of Kleene (1978). (Addendum to Kleene (1976).) Zentralblatt für Mathematik und ihre Grenzgebiete 366, 03001.Google Scholar
  27. Kuczyński, J. (1938), O Twierdzeniu Gödla, Kwartalnik Filozoficzny 14, 74–80.Google Scholar
  28. Ladrière, J. (1957), Les Limitations Internes des Formalismes, Nauwelaerte, Louvain; Gauthier-Villars, Paris.MATHGoogle Scholar
  29. Menger, K. (1978), Selected Papers in Logic and Foundations, Didactics, Economics. (Vienna Circle Collection, Number 10.) Reidel, Dordrecht.Google Scholar
  30. Mostowski, A. (1938), Review of Kuczyński (1938), J. Symbolic Logic 3, 118.Google Scholar
  31. Perelman, C. (1936), L’Antinomie de M. Gödel, Académie Royale de Belgique, Bulletin de la Classe des Sciences, Series 5, 22, 730–736.MATHGoogle Scholar
  32. Popper, K.R. (1980), Der wichtigste Beitrag seit Aristoteles, Wissenschaft aktuell 4/80, 50–51.Google Scholar
  33. Post, E.L. (1965), Absolutely unsolvable problems and relatively undecidable propositions: Account of an anticipation, in Davis (1965), pp. 338–433.Google Scholar
  34. Quine, W.V. (1978), Kurt Gödel (1906–1978). Year Book of the American Philosophical Society 1978, 81–84.Google Scholar
  35. Rosser, J.B. (1936), Extensions of some theorems of Gödel and Church, J. Symbolic Logic 1, 87–91. (Reprinted in Davis (1965), pp. 231–235.)MATHCrossRefGoogle Scholar
  36. Rosser, J.B. (1938), Review of Grelling (1937/38), J. Symbolic Logic 3, 86.Google Scholar
  37. Tarski, A. (1956), Logic, Semantics, Metamathematics. Edited and translated by J.H. Woodger. Oxford University Press, Oxford.Google Scholar
  38. Turing, A.M. (1936/37), On computable numbers, with an application to the Entscheidungsproblem, Proc. London Math. Soc, Series 2, 42, 230–265. Corrigenda, ibid. 43, 544–546. (Reprinted in Davis (1965), pp. 115–154.)MATHCrossRefGoogle Scholar
  39. van Heijenoort, J. (ed.) (1967), From Frege to Gödel. A Source Book in Mathematical Logic, 1879–1931, Harvard University Press, Cambridge, MA.MATHGoogle Scholar
  40. Wang, H. (1981), Some facts about Kurt Gödel, J. Symbolic Logic 46, 653–659.MATHCrossRefMathSciNetGoogle Scholar
  41. Zermelo, E. (1932), Über Stufen der Quantifikation und die Logik des Unendlichen, Jahresber. Deutsch. Math. Verein. 41, part 2, 85–88.Google Scholar

Copyright information

© Philosophy of Science Association 1985

Authors and Affiliations

  • John W. DawsonJr.
    • 1
  1. 1.Department of MathematicsPennsylvania State UniversityYorkUSA

Personalised recommendations