The First Russell Paradox

  • Irving H. Anellis


In 1896, Russell read Arthur Hannequin’s (1895) book Essai Critique sur I’Hypothèse des Atomes dans la Science Contemporaine, which introduced him to Cantor’s work for the first time. Shortly thereafter, in 1897, he read Louis Couturat’s (1896) book De Vlnfini Mathématique and published a review of that book in the journal Mind (Russell, 1897). Couturat gave a very careful exposition of Cantorian set theory and, most unusual for its day, a very favorable one. Russell at first rejected Cantorian set theory, for reasons which I detail in Anellis (1984b). Nevertheless, after reading Russell’s review of his book, Couturat established a correspondence with Russell (1897–1914) that lasted until Couturat’s tragic death. Thanks to Couturat’s efforts, Russell came to appreciate better and understand Cantor’s work, and soon entered into correspondence with Cantor. Cantor soon furnished Russell with reprints of his work including Über die elementare Frage der Mannigfaltigkeitslehre (1892). This new attitude towards Cantorian set theory, however, did nothing to diminish Russell’s critical eye. And after reading Cantor (1892), Russell was able to obtain the first version of the Russell paradox. In §3, which is the heart of this chapter, I use unpublished documentary evidence to show that Russell obtained a version of his famed paradox much earlier than has been commonly assumed, and, with the aid of a work of Crossley (1973) in which the Russell paradox was derived directly from the Cantor paradox, I show how Russell had done the same, as early as December 1900.


Mathematical Philosophy Gestalt Switch Great Cardinal Russell Paradox Vicious Circle Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anellis, I.H. (1983), Bertrand Russell’s earliest reactions to Cantorian set theory, Preliminary report, Abstracts Amer. Math. Soc. 4, 531.Google Scholar
  2. Anellis, I.H. (1984a), Russell on Cantor: An early version of the Russell paradox? Preliminary report, Abstracts Amer. Math. Soc. 5, 128.Google Scholar
  3. Anellis, I.H. (1984b), Bertrand Russell’s earliest reactions to Cantorian set theory, 1896–1900, in J.E. Baumgartner, D.A. Martin, and S. Shelah, (eds.), Axiomatic Set Theory, Contemp. Math. 31, 1–11.Google Scholar
  4. Anellis, I.H. (1987), Russell’s earliest interpretation of Cantorian set theory, 1896–1900, Philosophia Mathematica (n.s.) 2, 1–31.MATHCrossRefMathSciNetGoogle Scholar
  5. Anellis, I.H. (1988), The Abian Paradox, Abstracts of papers presented to the American Mathematical Society 9, 6.Google Scholar
  6. Beth, E.W. (1966), The Foundations of Mathematics, rev. ed., Harper & Row, New York.Google Scholar
  7. Blackwell, K. (1984–5), The Text of the Principles of Mathematics, Russell (2), 4 (1984–1985), 271–288.Google Scholar
  8. Boyer, C.B. (1968), A History of Mathematics, Wiley, New York.MATHGoogle Scholar
  9. Bunn, R. (1980), Developments in the foundations of mathematics, 1870–1910, in I, Grattan-Guinness (ed.), From the Calculus to Set Theory, 1630–1910: An Introductory History, Duckworth, London, pp. 221–255.Google Scholar
  10. Burali-Forti, C. (1897), Una questione sui numeri transfiniti, Rend. Circ. Mat. Palermo 11, 154–164. (English translation in van Heijenoort (1976a, pp. 104–111).MATHCrossRefGoogle Scholar
  11. Cantor, G. (1883a), Essais mathématiques, Acta Math. 2, 305–414.CrossRefMathSciNetGoogle Scholar
  12. Cantor, G. (1883b), Grundlagen einer allgemeinen Mannigfaltigkeitslehre Math. Ann. 21, 545–586. (Reprinted in Zermelo (1932, pp. 165–204).)CrossRefMathSciNetGoogle Scholar
  13. Cantor, G. (1892), Über die elementare Frage der Mannigfaltigkeitslehre, Jahresber. Deutsch. Math.-Verein. 1, 75–78.Google Scholar
  14. Cantor, G Cantor an Dedekind, 28 Juli, 1899, Zermelo (1932, pp. 443–447). (English translation in van Heijenoort (1967a, pp. 113–117).)Google Scholar
  15. Cantor, G. (1895–97), Beiträge zur Begründung der transfiniten Mengenlehre, Math. Ann. 46, 481–512; 49, 207–246. (English translation in Jourdain (1915).)CrossRefGoogle Scholar
  16. Chihara, C.S. (1973), Ontology and the Vicious Circle Principle, Cornell University Press, New York.Google Scholar
  17. Cocchiarella, N.B. (1974), Fregean semantics for a realist ontology, Notre Dame J. Formal Logic 15, 552–568.MATHCrossRefMathSciNetGoogle Scholar
  18. Coffa, J.A. (1979), The humble origins of Russell’s paradox, Russell (o.s.) nos. 33–34, 31–37.Google Scholar
  19. Copi, I.M. (1971), The Theory of Logical Types, Routledge & Kegan Paul, London.Google Scholar
  20. Couturat, L. (1896), De llnfini Mathématique, Felix Alcan, Paris.Google Scholar
  21. Crossley, J.N. (1973), A note on Cantor’s theorem and Russell’s paradox, Austral. J. Philos. 51, 70–71.CrossRefGoogle Scholar
  22. Dauben, J.W. (1980), The development of Cantorian set theory, in I. Grattan-Guinness (ed.), From the Calculus to Set Theory, 1630–1910: An Introductory History, Duckworth, London, pp. 181–219.Google Scholar
  23. DeLong, H. (1970), A Profile of Mathematical Logic, Addison-Wesley, Reading, MA.MATHGoogle Scholar
  24. Doets, H.C. (1983), Cantor’s paradise. Nieuw Arch. Wisk. 1, 290–344.MATHMathSciNetGoogle Scholar
  25. Frege, G (1903), Grundgesetze der Arithmetik II, Pohle, Jena.MATHGoogle Scholar
  26. Garciadiego Dantan, A.R. (1983), Bertrand Russell and the Origin of the Set-Theoretic Paradoxes, Ph.D. Thesis, University of Toronto.Google Scholar
  27. Garciadiego Dantan, A.R. (1984), Abstract: Bertrand Russell and the origin of the set-theoretic paradoxes, Dissert. Abstracts International 44, 2864–A.Google Scholar
  28. Grattan-Guinness, I. (1972), Bertrand Russell on his paradox and the multiplicative axiom: an unpublished letter to Philip Jourdain, J. Philos. Logic 1, 103–110.MATHCrossRefMathSciNetGoogle Scholar
  29. Grattan-Guinness, I. (ed.) (1977), Dear Russell—Dear Jourdain: A Commentary on Russell’s Logic, Based on His Correspondence with Philip Jourdain, Columbia University Press, New York.MATHGoogle Scholar
  30. Grattan-Guinness, I. (1978), How Bertrand Russell discovered his paradox, Historia Math. 5, 127–137.MATHCrossRefMathSciNetGoogle Scholar
  31. Grattan-Guinness, I. (1980), Georg Cantor’s influence on Bertrand Russell, Hist. Philos. Logic 1, 61–69.CrossRefMathSciNetGoogle Scholar
  32. Hannequin, A. (1895), Essai Critique sur l’Hypothèse des Atomes dans la Science Contemporaine, Masson, Paris.Google Scholar
  33. Jourdain, P.E.B. (1912), Mr. Bertrand Russell’s first work on the principles of mathematics, Monist 22, 149–158.Google Scholar
  34. Jourdain, P.E.B. (1913), A correction and some remarks, Monist 23, 145–148.Google Scholar
  35. Jourdain, P.E.B. (trans.) (1915), Cantor, Contributions to the Founding of the Theory of Transfinite Numbers, with an Introduction and Notes, Open Court, New York. (Reprinted by Dover, New York, 1955.) (English translation of Cantor (1895).)Google Scholar
  36. Kleene, S.C. (1967), Mathematical Logic, Wiley, New York.MATHGoogle Scholar
  37. Kleene, S.C. (1971), Introduction to Metamathematics, North-Holland/American Elsevier, Amsterdam/New York.Google Scholar
  38. Kneale, W. and Kneale, M. (1962), The Development of Logic, Clarendon Press, Oxford.MATHGoogle Scholar
  39. Levy, A. (1979), Basic Set Theory, Springer-Verlag, New York.MATHGoogle Scholar
  40. Moore, G.H. (1982), Zermelo’s Axiom of Choice: Its Origins, Development and Influence, Springer-Verlag, New York.MATHGoogle Scholar
  41. Moore, G.H. (1988), The roots of Russell’s paradox, Russell (n.s.) 8, 46–56.Google Scholar
  42. Moore, G.H. and Garciadiego, A.R. (1981), Burali-Forti’s paradox: a reappraisal of its origins, Historia Math. 8, 319–350.MATHCrossRefMathSciNetGoogle Scholar
  43. Nidditch, P.H. (1962), The Development of Mathematical Logic, Routledge & Kegan Paul, London; Dover, New York.MATHGoogle Scholar
  44. Peano, G (1902–1906), Super teorema de Cantor-Bernstein et additione, Riv. Mat. 8, 136–157.Google Scholar
  45. Poincaré, H. (1906), Les Mathématiques et la logique. IV. Rev. Métaphysique et de Morale 14, 294–317.Google Scholar
  46. Rosser, J.B. (1953), Logic for Mathematicians, McGraw-Hill, New York.MATHGoogle Scholar
  47. Russell, B. (1983), What Shall I Read? MS notebook, AR. Covers the years 1891–1902. (In K. Blackwell, N. Griffin, R. Rempel, and J. Slater (eds.), Collected Papers of Bertrand Russell, I, Allen and Unwin, London, pp. 347–365.)Google Scholar
  48. Russell, B. (1897), Review of De l’Infini Mathématique by Louis Couturat, AR-BREP 2:6. Mind 6, 112–119.CrossRefGoogle Scholar
  49. Russell, B. Russell-Couturat Correspondence, 1897–1914, AR.Google Scholar
  50. Russell, B. (1901), Recent work on the Principles of Mathematics, AR-BREP 2:39, 15 pp. Published in International Monthly 4, 83–101. (Reprinted as Mathematics and the Metaphysicians, B. Russell (1918), Mysticism and Logic, Longmans, Green, New York, pp. 74–96.)Google Scholar
  51. Russell, B. (1902), Letter to Frege (June 16, 1902), in German; AR. (English translation by B. Woodward in van Heijenoort (1967a, pp. 124–125).)Google Scholar
  52. Russell, B. (1903), Principles of Mathematics, Cambridge University Press, London.MATHGoogle Scholar
  53. Russell, B. (1919), Introduction to Mathematical Philosophy, Allen and Unwin, London.MATHGoogle Scholar
  54. Temple G (1981), 100 Years of Mathematics, Springer-Verlag, New York.MATHGoogle Scholar
  55. van Heijenoort, J. (ed.) (1967a), From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931. Harvard University Press, Cambridge, MA.MATHGoogle Scholar
  56. van Heijenoort, J. (1967b), Logical paradoxes, in P. Edwards (ed.), Encyclopedia of Philosophy, Vol. 5, Macmillan, New York, pp. 45–51.Google Scholar
  57. Zermelo, E. (ed.) (1932), Cantors Gesammelte Abhandlungen mathematischen und philosophischen Inhalts, Springer-Verlag, Berlin. (Reprinted: Olms, Hildesheim, 1962.)MATHGoogle Scholar

Copyright information

© Birkhäuser Boston 2008

Authors and Affiliations

  • Irving H. Anellis
    • 1
  1. 1.Modern Logic PublishingAmesUSA

Personalised recommendations