Advertisement

Witt Space Cobordism Theory (after P. Siegel)

  • M. Goresky
Part of the Modern Birkhäuser Classics book series (MBC, volume 50)

Abstract

This is a report on the paper [S] of Paul Siegel.

Keywords

Intersection Pairing Homology Class Symmetric Bilinear Form Symplectic Basis Singular Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9. References

  1. [GM1]
    M. GORESKY and R. MACPHERSON, Intersection homology theory. Topology 19 (1980) 135–162MATHCrossRefMathSciNetGoogle Scholar
  2. [GM2]
    M. GORESKY and R. MACPHERSON, Intersection homology II, Inventiones Mathematicae 72 (1983) 77–130MATHCrossRefMathSciNetGoogle Scholar
  3. [GS]
    M. GORESKY and P. SIEGEL, Linking pairings of singular spaces, Commentarii Mathematici Helvetici 58 (1983) 96–110MATHCrossRefMathSciNetGoogle Scholar
  4. [MH]
    J. MILNOR and D. HUSEMOLLER, Symmetric Bilinear Forms, Springer-Verlag, New York 1973MATHGoogle Scholar
  5. [S]
    P. SIEGEL, Witt spaces: a geometric cycle theory for KO homology at odd primes, to appear in Am. J. of MathematicsGoogle Scholar

Copyright information

© Birkhäuser Boston, Inc. 1984

Authors and Affiliations

  • M. Goresky
    • 1
  1. 1.Department of MathematicsNortheastern UniversityBostonUSA

Personalised recommendations