Sheaf Theoretic Intersection Cohomology

  • A. Borel
Part of the Modern Birkhäuser Classics book series (MBC, volume 50)


As already pointed out in the introduction, some familiarity with sheaf theory, as developed in Godement [5] for instance, is assumed. This section is meant mainly to fix some notation and add some complements to [5].


Exact Sequence Local System Spectral Sequence Short Exact Sequence Inverse System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. BOREL, The Poincaré duality in generalized manifolds, Mich. Math. J. 4 (1957) 227–239CrossRefMathSciNetGoogle Scholar
  2. [2]
    A. BOREL and J.C. MOORE, Homology theory for locally compact spaces, Mich. Math. J. 7 (1960) 137–159MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    N. BOURBAKI, Algèbre, Chap. 10: Algèbre homologique, Masson, Paris 1980Google Scholar
  4. [4]
    G. BREDON, Sheaf Theory, McGraw Hill 1967Google Scholar
  5. [5]
    R. GODEMENT, Topologie algébrique et Théorie des faisceaux, Act. Sci. Ind. 1252, Hermann, Paris 1958Google Scholar
  6. [6]
    M. GORESKY and R. MACPHERSON, Intersection homology II, Inv. Math. 71 (1983) 77–129CrossRefMathSciNetGoogle Scholar
  7. [7]
    R. HARTSHORNE, Residues and duality, Lecture Notes in Math. 20, Springer-Verlag 1966Google Scholar
  8. [8]
    B. IVERSEN, Cohomology of sheaves, Notes, Aarhus University, 1984Google Scholar
  9. [9]
    L. KAUP and M.S. KEANE, Induktive Limiten endlich erzeugter freier Moduln, Manuscripta Math. 1 (1969) 9–21MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Séminaire Heidelberg-Strasbourg 1966–67, IRMAGoogle Scholar
  11. [11]
    J.L. VERDIER, Dualité dans la cohomologie des espaces localement compacts, Séminaire Bourbaki, Exp. 300 (1965–66)Google Scholar
  12. [12]
    J.L. VERDIER, Catégories dérivées, Etat 0, SGA 4 1/2, Lecture Notes in Math. 569 (1977), 262–311MathSciNetGoogle Scholar
  13. [13]
    J.L. VERDIER, Classe d’homologie associée à un cycle, Astérisque 36–37 (1976) 101–151MathSciNetGoogle Scholar

Copyright information

© Birkhäuser Boston, Inc. 1984

Authors and Affiliations

  • A. Borel
    • 1
    • 2
  1. 1.Mathematisches Forschungsinstitut ETH-ZentrumZürichSwitzerland
  2. 2.The Institute for advanced study School of MathematicsPrincetonUSA

Personalised recommendations