Signaling and Feedback in Biological Networks

  • Sandeep Krishna
  • Mogens H. Jensen
  • Kim Sneppen
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Cellular processes operate on a wide range of time and length scales to produce complex and intricate dynamics. It is a great challenge to understand both how these dynamical patterns are produced, as well as why they are produced; that is, what functional or evolutionary role do they play? This is one of the most fruitful areas in which to apply the ideas of complex networks. Living cells have all the prerequisites for a useful representation as networks. First, cellular systems contain numerous non-identical active components—genes, proteins, RNA, etc. These are the nodes of the network. Second, there are many interactions between these components, which form the links between the nodes. Not every pair of components interacts, so the resulting network is not fully connected, nor is it a tree or other simple topology. Thus, cellular networks provide plenty of scope for analysing their structure and graph-theoretic properties, and numerous studies have taken advantage of this (see (1) for reviews and [2–9] for some examples).

Network representations of cellular systems can easily be augmented to address dynamical issues. Each node can be associated with a dynamical variable which could represent, for example, the concentration of that protein or the level of expression of that gene. Equations or rules governing the temporal dynamics of these variables can then be written, where the network structure determines which variables interact with each other. This usually requires encoding more information about the interactions into the network representation. For instance, apart from knowing that one node links to another, one needs to know the sign and strength of the interaction. However, in a network picture it is sometimes difficult to encode more detailed molecular information, such as whether the binding of a protein to DNA is accompanied by DNA looping, or whether a small molecule that binds to a protein can also bind equally well when that protein is bound to DNA.


Feedback Loop Positive Feedback Loop Cellular Network Negative Feedback Loop Strong Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank our collaborators, with whom much of the work described here was done: J. Axelsen, I. Dodd, M. Micheelsen, S. Pigolotti, S. Semsey, G. Thon and G. Tiana. We acknowledge support from The Danish National Research Foundation and the Villum Kann Rasmussen Foundation.


  1. 1.
    S. Bornholdt and H.G Schuster, eds., Handbook of Graphs and Networks: From the Genome to the Internet, Wiley-VCH, Weinheim (2002).Google Scholar
  2. 2.
    E. Ravasz, A.L. Somera, D.A. Mongru, Z.N. Oltvai and A.-L. Barabasi, Science, 297, 1551–1555 (2002).CrossRefGoogle Scholar
  3. 3.
    S. Maslov and K. Sneppen, Science, 296, 910–913 (2002).CrossRefGoogle Scholar
  4. 4.
    K. Sneppen, A. Trusina and M. Rosvall, Europhys. Lett., 69, 853 (2005).CrossRefGoogle Scholar
  5. 5.
    A. Trusina, S. Maslov, P. Minnhagen and K. Sneppen, Phys. Rev. Lett., 92, 178702 (2004).CrossRefGoogle Scholar
  6. 6.
    J. B. Axelsen, S. Bernhardsson and K. Sneppen, BMC Systems Biology, 2, 25 (2008).CrossRefGoogle Scholar
  7. 7.
    S.S. Shen-Orr, R. Milo, S. Mangan and U. Alon, Nat. Genetics, 31, 64–68 (2002).CrossRefGoogle Scholar
  8. 8.
    A. Samal, S. Singh, V. Giri, S. Krishna, N. Raghuram and S. Jain, BMC Bioinformatics, 7, 118 (2006).CrossRefGoogle Scholar
  9. 9.
    S. Singh, A. Samal, V. Giri, S. Krishna, N. Raghuram and S. Jain, Eur. Phys. J. B, 57, 75–80 (2007).CrossRefGoogle Scholar
  10. 10.
    A. Hoffmann, A. Levchenko, M.L. Scott and D. Baltimore, Science, 298, 1241–1245 (2002).CrossRefGoogle Scholar
  11. 11.
    S. Krishna, M.H. Jensen and K. Sneppen, Proc. Natl. Acad. Sci. USA, 103, 10840–10845 (2006).CrossRefGoogle Scholar
  12. 12.
    E. Aurell, S. Brown, J. Johansen and K. Sneppen, Phys. Rev. E, 65, 51914 (2002).CrossRefGoogle Scholar
  13. 13.
    S. Krishna, S. Semsey and K. Sneppen, Proc. Natl. Acad. Sci. USA, 104, 20815–20819 (2007).CrossRefGoogle Scholar
  14. 14.
    K.B. Arnvig, S. Pedersen and K. Sneppen, Phys. Rev. Lett., 84, 3005 (2000).CrossRefGoogle Scholar
  15. 15.
    G. Tiana, M.H. Jensen and K. Sneppen, Eur. Phys. J. B 29, 135 (2002).CrossRefGoogle Scholar
  16. 16.
    M.H. Jensen, G. Tiana and K. Sneppen, Febs Letters 541, 176 (2003).CrossRefGoogle Scholar
  17. 17.
    P.D. Karp et al., Nucl. Acids Res., 35, 7577–7590 (2007).CrossRefGoogle Scholar
  18. 18.
    J.B. Axelsen, S. Krishna and K. Sneppen, J. Stat. Mech., P01018 (2008).Google Scholar
  19. 19.
    L.H. Hartwell, J.J. Hopfield, S. Leibler and A.W. Murray, Nature, 402(6761), C47–52 (1999).Google Scholar
  20. 20.
    S. Maslov, K. Sneppen and I. Ispolatov, New J. Phys., 9, 273 (2007).CrossRefGoogle Scholar
  21. 21.
    S. Maslov and I. Ispolatov, Proc. Natl. Acad. Sci. USA, 104, 13655–13660 (2007).CrossRefGoogle Scholar
  22. 22.
    S. Krishna, A.M.C. Andersson, S. Semsey and Kim Sneppen, Nucl. Acids Res., 34, 2455 (2006).CrossRefGoogle Scholar
  23. 22.
    R. Thomas, Quantum noise, Springer Series in Synergetics 9, Ed. Gardiner, Springer, Berlin, pp. 180–193 (1981).Google Scholar
  24. 24.
    E.H. Snoussi, J, Biol. Sys., 6, 3–9 (1998).CrossRefMATHGoogle Scholar
  25. 25.
    J.L. Gouzé, J. Biol. Syst., 6, 11–15 (1998).CrossRefMATHGoogle Scholar
  26. 26.
    J.E. Ferrell Jr., Curr. Opin. Cell Biol., 14, 140–148 (2002).CrossRefGoogle Scholar
  27. 27.
    D. Angeli, J.E. Ferrell and E.D- Sontag, Proc. Natl. Acad. Sci. USA, 101, 1822–1827 (2004).CrossRefGoogle Scholar
  28. 28.
    F.J. Isaacs, J. Hasty, C.R. Cantor and J.J. Collins, Proc. Natl. Acad. Sci. USA, 100, 7714–7719 (2003).CrossRefGoogle Scholar
  29. 29.
    H. Hirata, S. Yoshiura, T. Ohtsuka, Y. Bessho, T. Harada, K. Yoshikawa and R. Kageyama, Science, 298, 840–843 (2002).CrossRefGoogle Scholar
  30. 30.
    S.L. Harris and A.J. Levine, Oncogene, 24, 2899–2908 (2005).CrossRefGoogle Scholar
  31. 31.
    F. Jacob and J. Monod, J. Mol. Biol., 3, 318–356 (1961).CrossRefGoogle Scholar
  32. 32.
    P. Wong, S. Gladney and J.D. Keasling, Biotechnol. Prog., 13, 132–143 (1997).CrossRefGoogle Scholar
  33. 33.
    H.L. Pahl, Oncogene, 18, 6853–6866 (1999).CrossRefGoogle Scholar
  34. 33.
    M. Ptashne, A Genetic Switch: Phage Lambda Revisited, Cold Spring Harbor Laboratory Press Cold Spring Harbor(2004).Google Scholar
  35. 35.
    S. Pigolotti, S. Krishna and M.H. Jensen, Proc. Natl. Acad. Sci. USA, 104, 6533–6537 (2007).CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    M. Schnarr et al., Biochimie, 73, 423–431 (1991).CrossRefGoogle Scholar
  37. 37.
    M.B. Elowitz and S. Leibler, Nature, 403, 335–338 (2000).CrossRefGoogle Scholar
  38. 38.
    D.E. Nelson, A.E.C. Ihekwaba, M. Elliott, J.R. Johnson, C.A. Gibney, B.E. Foreman, G. Nelson, V. See, C.A. Horton, D.G. Spiller et al., Science, 306, 704–708 (2004).CrossRefGoogle Scholar
  39. 39.
    G. Tiana, S. Krishna, S. Pigolotti, M. H. Jensen and K. Sneppen, Phys. Biol., 4, R1 (2007).CrossRefGoogle Scholar
  40. 40.
    C.Y. Huang and J.E. Ferrel Jr, Proc. Natl. Acad. Sci. USA, 93, 10078–10083 (1996).CrossRefGoogle Scholar
  41. 41.
    A. Goldbeter and D.E. Koshland, Proc. Natl. Acad. Sci. USA, 78, 6840–6844 (1981).CrossRefGoogle Scholar
  42. 42.
    G. Felsenfeld and M. Groudine, Nature, 421, 448 (2003).CrossRefGoogle Scholar
  43. 43.
    A.T. Annunziato, J. Biol. Chem., 280, 12065 (2005).CrossRefGoogle Scholar
  44. 44.
    G. Thon and T. Friis, Genetics, 145, 685 (1997).Google Scholar
  45. 45.
    I.B. Dodd, M.A. Micheelsen, K. Sneppen and G. Thon, Cell, 129, 813–822 (2007).CrossRefGoogle Scholar
  46. 46.
    G. Thon, P. Bjerling, C.M. Brunner and J. Verhein-Hansen, Genetics, 161, 611 (2002).Google Scholar
  47. 47.
    B.H. Zimm, Proc. Natl. Acad. Sci. USA, 45, 1601 (1959).CrossRefGoogle Scholar
  48. 48.
    H.A. Scherage, Pure and Applied Chemistry, 36 1 (1972).CrossRefGoogle Scholar
  49. 49.
    R. Schleif, Trends Genet., 16, 559–565 (2000).CrossRefGoogle Scholar
  50. 50.
    E. Richet and O. Raibaud, EMBO J., 8, 981–987 (1989).Google Scholar
  51. 51.
    E. Massé and M. Arguin, Trends Biochem. Sci., 30, 462–468 (2005).CrossRefGoogle Scholar
  52. 52.
    M.J. Weickert and S. Adhya, Mol. Microbiol., 10, 245–251 (1993).CrossRefGoogle Scholar
  53. 53.
    E.M. Ozbudak, M. Thattai, H.N. Lim, B.I. Shraiman and A. van Oudenaarden, Nature, 427, 737–740 (2004).CrossRefGoogle Scholar
  54. 54.
    W.P. Smits, O.P. Kuipers and J.W. Veening, Nat. Rev. Microbiol., 4, 259–271 (2006).CrossRefGoogle Scholar
  55. 55.
    R. Donangelo and K. Sneppen, Physica A, 316, 581–591 (2002).CrossRefMATHGoogle Scholar
  56. 56.
    S. Semsey, A.M.C. Andersson, S. Krishna, M.H. Jensen, E. Massé and K. Sneppen, Nucl. Acids Res., 34, 4960–4967 (2006).CrossRefGoogle Scholar
  57. 57.
    N. Mitarai, A.M.C. Andersson, S. Krishna, S. Semsey and K. Sneppen, Phys. Biol., 4, 164–171 (2007).CrossRefGoogle Scholar
  58. 58.
    F.W. Outten, O. Djaman and G. Storz, Mol. Microbiol., 52, 861–872 (2004).CrossRefGoogle Scholar
  59. 59.
    M. Werner, S. Semsey, K. Sneppen and S. Krishna, preprint (2008).Google Scholar
  60. 60.
    U.S. EPA Exposure Factors Handbook, 1997,

Copyright information

© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Center for Models of LifeNiels Bohr InstituteCopenhagenDenmark
  2. 2.Center for Models of LifeNiels Bohr InstituteCopenhagenDenmark
  3. 3.Center for Models of LifeNiels Bohr InstituteCopenhagenDenmark

Personalised recommendations