Advertisement

Ecological Networks: Structure, Interaction Strength, and Stability

  • Samit Bhattacharyya
  • Somdatta Sinha
Chapter
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

The fundamental building blocks of any ecosystem, the food webs, which are assemblages of species through various interconnections, provide a central concept in ecology. The study of a food web allows abstractions of the complexity and interconnectedness of natural communities that transcend the specific details of the underlying systems. For example, Fig. 1 shows a typical food web, where the species are connected through their feeding relationships. The top predator, Heliaster (starfish) feeds on many gastropods like Hexaplex, Morula, Cantharus, etc., some of whom predate on each other [129]. Interactions between species in a food web can be of many types, such as predation, competition, mutualism, commensalism, and ammensalism (see Section 1.1, Fig. 2).

Keywords

Prey Species Interaction Strength Cascade Model Niche Model Ecological Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors are thankful to the anonymous referees for constructive, critical comments, and to the Department of Science and Technology, India, for financial support.

References

  1. 1.
    Abrams, P. et al. The role of indirect effects in food webs. In Food Webs: Integration of Patterns and Dynamics (eds G.A. Polis & K.O. Winemiller), 371–395, Chapman & Hall, New York (1996)Google Scholar
  2. 2.
    Allesina, S. and Bodini, A. Who dominates whom in the ecosystem? Energy flow and bottlenecks and cascading extinctions. J. Theor. Biol., 230, 351–358 (2004)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bascompte, J. and Melian, C. J. Simple trophic modules for complex food webs. Ecology, 86, 2868–2873 (2005)CrossRefGoogle Scholar
  4. 4.
    Bascompte, J. et al. Interaction strength combinations and the overfishing of a marine food web. Proc. Natl Acad. Sci. USA, 102, 5443–5447 (2005)CrossRefGoogle Scholar
  5. 5.
    Bastolla, U., Lassig, M., Manrubia, S. C. and Valleriani, A. Diversity patterns from ecological models at dynamical equilibrium. J. Theor. Biol., 212, 11–34 (2001)CrossRefGoogle Scholar
  6. 6.
    Berlow, E. L. et al. Interaction strengths in food webs: issues and opportunities. J. Anim. Ecol., 73, 585–598 (2004)CrossRefGoogle Scholar
  7. 7.
    Berlow, E. L., Brose U., and Martinez, N. D. The “Goldilocks factor” in food webs. Proc. Natl. Acad. Sci. USA, 105, 4079–4080 (2008)CrossRefGoogle Scholar
  8. 8.
    Bhattacharyya, S. and Bhattacharya, D. K. Pest control through viral diseases: mathematical modeling and analysis. J. Theor. Biol., 238, 177–197 (2006)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Caldarelli, G., Higgs, P. G. and McKane, A. J. Modelling coevolution in multi-species communities, J. Theor. Biol., 193, 345–358 (1998)CrossRefGoogle Scholar
  10. 10.
    Camacho, J. et al. Quantitative analysis of the local structure of food webs. J. Theor. Biol., 246, 260–268 (2007)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Case, T. J. Invasion resistance arises in strongly interacting species-rich model competition communities. Proc. Natl. Acad. Sci. USA, 87, 9610–9614 (1990)CrossRefMATHGoogle Scholar
  12. 12.
    Chen, X. and Cohen, J. E. Global stability, local stability and permanence in model food webs. J. Theor. Biol., 212, 223–305 (2001)CrossRefGoogle Scholar
  13. 13.
    Cohen, J. E., Briand, F. and Newman, C. M. Community food webs. Biomathematics, 20, Springer-Verlag, Berlin (1990)Google Scholar
  14. 14.
    Dambacher, J. M. et al. Relevance of community structure in assessing indeterminacy of ecological predictions. Ecology, 83, 1372–1385 (2002)CrossRefGoogle Scholar
  15. 15.
    Dambacher, J. M. et al. Qualitative stability and ambiguity in model ecosystems. Am. Nat., 161, 876–888 (2003)CrossRefGoogle Scholar
  16. 16.
    De Ruiter, P., Neutel, A. M. and Moore, J. C. Energetics, patterns of interaction strengths, and stability in real ecosystems. Science, 269, 1257–1260 (1995)CrossRefGoogle Scholar
  17. 17.
    Drossel, B. and McKane, A. J. Modelling food webs. In Handbook of Graphs and Networks (eds S. Bornholdt & H. G. Schuster), 218–247, Wiley-VCH, Berlin (2003)Google Scholar
  18. 18.
    Dunne, J. A. et al. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett., 5, 558–567 (2002)CrossRefGoogle Scholar
  19. 19.
    Emmerson, M. C. and Raffaelli, D. Predator-prey body size, interaction strength and the stability of a real food web. J. Anim. Ecol., 73, 399–409 (2004)CrossRefGoogle Scholar
  20. 20.
    Garcia-Domingo, J. L. and Saldana, J. Food-web complexity emerging from ecological dynamics on adaptive networks. J. Theor. Biol., 247, 819–826 (2007)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Garcia-Domingo, J. L. and Saldana, J. Effects of heterogeneous interaction strengths on food web complexity. Oikos, 117, 336–343 (2008)CrossRefGoogle Scholar
  22. 22.
    Ghosh, S., Bhattacharyya, S. and Bhattacharya, D. K. Role of viral infection in pest control: a mathematical study. Bull. Math. Biol., 69, 2649–2691 (2007)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Gross, T. et al. Long food chains are in general chaotic. Oikos, 109, 135–144 (2005)CrossRefGoogle Scholar
  24. 24.
    Hastings, A. and Powell, T. Chaos in a 3-species food-chain. Ecology, 72, 896–903 (1991)CrossRefGoogle Scholar
  25. 25.
    Jansen, V. A. A. and Kokkoris, G. D. Complexity and stability revisited, Ecol. Lett., 6, 498–502 (2003)CrossRefGoogle Scholar
  26. 26.
    Keitt, T. H. Network theory: an evolving approach to landscape conservation. Ecological and Modeling for Resource Managers, Springer Berlin, 125–134, (2003)Google Scholar
  27. 27.
    Keitt, T. H. and Economo, E. P. Species diversity in neutral metacommunities: a network approach. Ecol. Lett., 11(1), 52–62, (2008)Google Scholar
  28. 28.
    Kokkoris, G. D. et al. Variability in interaction strength and implications for biodiversity. J. Anim. Ecol., 71, 362–371 (2002)CrossRefGoogle Scholar
  29. 29.
    Kokkoris, G. D., Jansen, V. A. A., Loreau, M. and Troumbis, A. Y. Variability in interaction strength and implications for biodiversity. J. Anim. Ecol., 71, 362–371 (2002)CrossRefGoogle Scholar
  30. 30.
    Kondoh, M. Does foraging adaptation create the positive complexity-stability relationship in realistic food-web structure? J. Theor. Biol., 238, 646–651 (2006)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Krause, A. E. et al. Compartments revealed in food-web structure. Nature, 426, 282–285 (2003)CrossRefGoogle Scholar
  32. 32.
    Laska, M. S. and Wootton, J. T. Theoretical concepts and empirical approaches for measuring interaction strength. Ecology, 79, 461–476 (1998)CrossRefGoogle Scholar
  33. 33.
    Law, R. and Morton, R. D. Permanence and the assembly of ecological communities. Ecology, 77, 762–775 (1996)CrossRefGoogle Scholar
  34. 34.
    Lawton, J. H. Food webs. In Ecological Concepts: the Contribution of Ecology to an Understanding of the Natural World (ed. J. Cherret), 43–78, Blackwell, Boston (1990)Google Scholar
  35. 35.
    Levines, R. Evolution in Changing Environments: Some Theoretical Explanations. Princeton University Press, Princeton, NJ, USA (1968)Google Scholar
  36. 36.
    Logofet, D. O. Stronger-than-Lyapunov notions of matrix stability, or how ‘flowers’ help solving problems in mathematical ecology. Linear Algebra and Its Applications, 398, 75–100 (2005)CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    Loreau, M.. A new look at the relationship between diversity and stability. In Biodiversity and Ecosystem Functioning: Synthesis and Perspectives (eds M. Loreau, S. Naeem and P. Inchausti), 79–91, Oxford University Press, Oxford (2002)Google Scholar
  38. 38.
    MacArthur, R. H. and Levines, R. Strong, or weak interactions? Tansactions of the Connecticut Academy of Arts and Sciences, 44, 177–188 (1972)Google Scholar
  39. 39.
    Martinez, N. D. et al. Diversity, complexity, and persistence in large model ecosystems. In Ecological Networks, Linking Structure to Dynamics in Food Webs (eds Pascual, M. and Dunne, J. A.) Santa Fe Inst., Studies in the sciences of complexity. Oxford Univ. Press, 163–185 (2006)Google Scholar
  40. 40.
    May, R. M. Will a large complex system be stable? Nature, 238, 413–414 (1972)CrossRefGoogle Scholar
  41. 41.
    May, R. M. Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, NJ, USA(1973)Google Scholar
  42. 42.
    McCann, K. S. The diversity–stability debate. Nature, 405, 228–233 (2000)CrossRefGoogle Scholar
  43. 43.
    McCann, K. et al. Weak trophic interactions and the balance of nature. Nature, 395, 794–798 (1998)CrossRefGoogle Scholar
  44. 44.
    McCann, K. and Hastings, A. Re-evaluating the omnivory–stability relationship in food-webs. Proc. Roy. Soc. of London, Series B, 264, 1249–1254 (1998)CrossRefGoogle Scholar
  45. 45.
    Memmott, J.. Biodiversity loss and ecological network structure. In Ecological Networks: Linking Structure to Dynamics in Food Webs (eds. M. Pascual and J.A. Dunne), Oxford University Press, Oxford (2006)Google Scholar
  46. 46.
    Milo, R. et al. Network motifs: simple building blocks of complex networks. Science, 298, 824–827 (2002)CrossRefGoogle Scholar
  47. 47.
    Montoya, J. M., Pimm, S. L. and Sole, R. V. Ecological networks and their fragility. Nature, 442, 259–264 (2006)CrossRefGoogle Scholar
  48. 48.
    Montoya, J. M. and Sole, R. V. Topological properties of food webs: from real data to community assembly models. Oikos, 102, 614–622 (2003)CrossRefGoogle Scholar
  49. 49.
    Navarrete, S. A. and Berlow, E. L. Variable interaction strengths stabilize marine community patterns. Ecol. Lett., 9, 526–536 (2006)CrossRefGoogle Scholar
  50. 50.
    Navarrete, S. A. and Castilla, J. C. Experimental determination of predation intensity in an intertidal predator guild: dominant versus subordinate prey. Oikos, 100, 251–262 (2003)CrossRefGoogle Scholar
  51. 51.
    Otto, S. B., Berlow, E. L., Rand, N. E., Smiley, J. and Brose, U. Predator diversity and identity drive interaction strength and trophic cascades in a food web. Ecology, 89, 134–144 (2008)CrossRefGoogle Scholar
  52. 52.
    Paine, R. T. Food web complexity and species diversity. Am. Nat., 100, 65–75 (1966)CrossRefGoogle Scholar
  53. 53.
    Paine, R. T. A note on trophic complexity and community stability. Am. Nat., 103(929), 91–93 (1969)CrossRefGoogle Scholar
  54. 54.
    Paine, R. T. Food webs - road maps of interactions or grist for theoretical development. Ecology, 69, 1648–1654 (1988)CrossRefGoogle Scholar
  55. 55.
    Paine, R. T. A. Conversation on refining the concept of keystone species. Conservation Biology, 9(4), 962–964 (1995)CrossRefGoogle Scholar
  56. 56.
    Petchey, O. L., Beckerman, A. P, Riede, J. O. and Warren, P. H. Size, foraging, and food web structure. Proc. Natl. Acad. Sci. USA, 105, 4191–4196 (2008)CrossRefGoogle Scholar
  57. 57.
    Peterson, E. E., Theobald, D. M. and Ver Hoef, J. M. Geostatistical modeling on stream networks: developing valid covariance matrices based on hydrologic distance and stream flow. Freshwater Biology, 52, 267–279 (2007)CrossRefGoogle Scholar
  58. 58.
    Pimm, S. L. The complexity and stability of ecosystems. Nature, 307, 321–326 (1984)CrossRefGoogle Scholar
  59. 59.
    Polis, G. A. Stability is woven by complex webs. Nature, 395, 744–745 (1998)CrossRefGoogle Scholar
  60. 60.
    Post, W. M. and Pimm, S. L. Community assembly and food web stability, Math. Biosci., 64, 169–192 (1983)CrossRefMATHGoogle Scholar
  61. 61.
    Quince, C. et al. Topological structure and interaction strengths in model food webs. Ecol. Model., 187, 389–412 (2005)CrossRefGoogle Scholar
  62. 62.
    Raffaelli, D. G. Trends in research on shallow water food webs. Journal of Experimental Marine Biology and Ecology, 250, 223–232 (2000)CrossRefGoogle Scholar
  63. 63.
    Rooney, N. et al. Structural asymmetry and the stability of diverse food webs. Nature, 442, 265–269 (2006)CrossRefGoogle Scholar
  64. 64.
    Sabo, J. L. et al. Population dynamics and food web structure - predicting measurable food web properties with minimal detail and resolution. In Dynamic Food Webs, Multispecies Assemblages, Ecosystem Development and Environmental Change (eds. de Ruiter, P. C. et al.) Theor. Ecol. Ser., Academic Press, 437–452 (2005)Google Scholar
  65. 65.
    Schmitz, D. C. and Simberlo, D. Biological invasions: a growing threat. Issues in Sci. & Tech. 13, 33–40 (1997)Google Scholar
  66. 66.
    Singh, B. K., Subba Rao, J., Ramaswamy, R. and Sinha, S. The role of heterogeneity on the spatiotemporal dynamics of hostparasite metapopulation. Ecol. Model., 180, 435–443 (2004)CrossRefGoogle Scholar
  67. 67.
    Singh, B. K., Chattopadhyay, J. and Sinha, S. The role of virus infection in a simple phytoplankton zooplankton system. J. Theor. Biol., 231, 153–166 (2004)CrossRefMathSciNetGoogle Scholar
  68. 68.
    Sole, R. V., Alonso, D. and McKane, A. self-organized instability in complex ecosystems. Phil. Trans. Roy. Soc. Lond. Ser., B-Biol. Sci. 357, 667–681 (2002)CrossRefGoogle Scholar
  69. 69.
    Stone, L. Biodiversity and habitat destruction - a comparative study of model forest and coral-reef ecosystems. Proc. Natl. Acad. Sci. USA, 261, 381–388 (1995)Google Scholar
  70. 70.
    Tilman, D.. Habitat destruction and the extinction debt. Nature, 371, 65–66 (1994).CrossRefGoogle Scholar
  71. 71.
    Uchida, S. and Drossel, B. Relation between complexity and stability in food webs with adaptive behavior. J. Theor. Biol., 247, 713–722 (2007)CrossRefMathSciNetGoogle Scholar
  72. 72.
    Uchida, S., Drossel, B. and Brose, U. The structure of food webs with adaptive behaviour. Ecol. Model., 206, 263–276 (2007)CrossRefGoogle Scholar
  73. 73.
    Urban, D. L., Goslee, S., Pierce K. B. and Lookingbill, T.R. Extending community ecology to landscapes. Ecoscience, 9, 200–212 (2002)Google Scholar
  74. 74.
    Williams, R. J. and Martinez, N. D. Simple rules yield complex food webs. Nature, 404, 180–183 (2000)CrossRefGoogle Scholar
  75. 75.
    Woodward, G. and Hildrew, A. G. Body-size constraints on niche overlap and intraguild predation in a complex food web. J. Anim. Ecol., 71, 1063–1074 (2002)CrossRefGoogle Scholar
  76. 76.
    Wootton, J. T. Estimates and tests of per-capita interaction strength: diet, abundance, and impact of intertidally-foraging birds. Ecological Monographs, 67, 45–64 (1997)CrossRefGoogle Scholar
  77. 77.
    Wootton, J. T. and Emmerson M. Measurement of interaction strength in nature. Annu. Rev. Ecol. Evol. Syst., 36, 419–444 (2005)CrossRefGoogle Scholar
  78. 78.
    Yodzis, P. The indeterminacy of ecological interactions as perceived through perturbation experiments. Ecology, 69, 508–515 (1988)CrossRefGoogle Scholar
  79. 79.
    Yodzis, P. and Innes, S. Body-size and consumer-resource dynamics. Am. Nat., 139, 1151–1175 (1992)CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Mathematical Modelling and Computational Biology GroupCentre for Cellular and Molecular Biology, CSIRHyderabadIndia

Personalised recommendations