Advertisement

Advances in the Theory of Complex Networks

  • Fernando Peruani
Chapter
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

An exhaustive and comprehensive review on the theory of complex networks would imply nowadays a titanic task, and it would result in a lengthy work containing plenty of technical details of arguable relevance. Instead, this chapter addresses very briefly the ABC of complex network theory, visiting only the hallmarks of the theoretical founding, to finally focus on two of the most interesting and promising current research problems: the study of dynamical processes on transportation networks and the identification of communities in complex networks.

Keywords

Degree Distribution Severe Acute Respiratory Syndrome Cluster Coefficient Transportation Network Severe Acute Respiratory Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

16References

  1. 1.
    R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002).CrossRefMATHGoogle Scholar
  2. 2.
    S.N. Dorogovtsev and J.F.F. Mendes, Evolution of Networks: From Biological Nets to the Internet and WWW, Oxford University Press, Oxford, UK (2003).Google Scholar
  3. 3.
    F. Chung and L. Lu, Adv. Appl. Math. 26, 257 (2001).CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    E.P. Wigner, Ann. Math. 62, 548 (1955).CrossRefMathSciNetGoogle Scholar
  5. 5.
    E.P. Wigner, Ann. Math. 65, 203 (1957).CrossRefMathSciNetGoogle Scholar
  6. 6.
    E.P. Wigner, Ann. Math. 67, 325 (1958).CrossRefMathSciNetGoogle Scholar
  7. 7.
    M.L. Metha, Random Matrices, 2nd ed., Academic Press, New York (1991).Google Scholar
  8. 8.
    A. Crisanti, G. Paladin, and A. Vulpiani, Products of Random Matrices in Statistical Physics, Springer, Berlin (1993).Google Scholar
  9. 9.
    T. Guhr, A. Mueller-Groeling, and H.A. Weidenmueller, Phys. Rep. 299, 189 (1998).CrossRefMathSciNetGoogle Scholar
  10. 10.
    D.S. Callaway, M.E.J. Newman, S.H. Strogatz, and D.J. Watts, Phys. Rev. Lett. 85, 5468 (2000).CrossRefGoogle Scholar
  11. 11.
    M.E.J. Newman, S.H. Strogatz, and D.J. Watts, Phys. Rev. E 64, 026118 (2001).CrossRefGoogle Scholar
  12. 12.
    R. Albert, H. Jeong, and A.L. Barabási, Nature (London) 406, 6794 (2000); 406, 378 (2000).CrossRefGoogle Scholar
  13. 13.
    R. Cohen, K. Erez, D. Ben-Avraham, and S. Havlin, Phys. Rev. Lett. 85, 4626 (2000).CrossRefGoogle Scholar
  14. 14.
    R. Cohen, K. Erez, D. Ben-Avraham, and S. Havlin, Phys. Rev. Lett. 86, 3682 (2001).CrossRefGoogle Scholar
  15. 15.
    B. Mitra, F. Peruani, S. Ghose, and N. Ganguly, in Proceedings of 14th ACM Conference on Computer and Communications Security (Association for Computing Machinery, Inc. New York, 2007).MATHGoogle Scholar
  16. 16.
    B. Mitra, F. Peruani, S. Ghose, and N. Ganguly, in Proceedings of 26th Symposium on Principles of Distributed Computing (Association for Computing Machinery, Inc. New York, 2007).Google Scholar
  17. 17.
    B. Mitra, N. Ganguly, S. Ghose, and F. Peruani, Phys. Rev. E 78, 026115 (2008).Google Scholar
  18. 18.
    V. Colizza, R. Pastor-Satorras, and A. Vespignani, Nature Physics 3, 276–282 (2007).CrossRefGoogle Scholar
  19. 19.
    L. Hufnagel, D. Brockmann, and T. Geisel, Proc. Natl. Acad. Sci. USA 101, 15124 (2004).CrossRefGoogle Scholar
  20. 20.
    Z. Wu, L.A. Braunstein, V. Colizza, R. Cohen, S. Havlin, and H.E. Stanley, Phys. Rev. E 74, 056104 (2006).CrossRefGoogle Scholar
  21. 21.
    V. Colizza, A. Barrat, M. Barthelemy, and A. Vespignani, Proc. Natl. Acad. Sci. USA 103, 2015–2020 (2006).CrossRefGoogle Scholar
  22. 22.
    V. Colizza and A. Vespignani, J. Theor. Biol. 251, 450–467 (2008).CrossRefGoogle Scholar
  23. 23.
    V. Colizza and A. Vespignani, Phys. Rev. Lett. 99, 148701 (2007).CrossRefGoogle Scholar
  24. 24.
    V. Colizza, A. Barrat, M. Barthelemy, and A. Vespignani, Int. J. Bifurcation and Chaos 17, 2491–2500 (2007).CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    V. Colizza, A. Barrat, M. Barthelemy, and A. Vespignani, BMC Medicine 5, 34 (2007).CrossRefGoogle Scholar
  26. 26.
    I.J. Farkas, I. Derenyi, A.-L. Barabási, and T. Vicsek, Phys. Rev. E 64, 026704 (2001).CrossRefGoogle Scholar
  27. 27.
    N.T. Bailey, The Mathematical Theory of Infectious Diseases, 2nd edition, Hodder Arnold (1975).Google Scholar
  28. 28.
    M.E.J. Newman and M. Girvan, Phys. Rev. E 69, 026113 (2004).CrossRefGoogle Scholar
  29. 29.
    S. Fortunato, e-print arXiv:0705.4445.Google Scholar
  30. 30.
    J.J. Ramasco, S.N. Dorogovtsev, and R. Pastor-Satorras, Phys. Rev. E 70, 036106 (2004).CrossRefGoogle Scholar
  31. 31.
    D.J. Watts and S.H. Strogatz, Nature (London) 393, 440 (1998).CrossRefGoogle Scholar
  32. 32.
    R. Albert and A.-L. Barabási, Phys. Rev. Lett. 85, 5234 (2000).CrossRefGoogle Scholar
  33. 33.
    R. Albert and A.-L. Barabási, Science 286, 509 (1999).CrossRefMathSciNetGoogle Scholar
  34. 34.
    L.A.N. Amaral, A. Scala, M. Barthélémy, and H.E. Stanley, Proc. Natl. Acad. Sci. 97, 11149 (2000).CrossRefGoogle Scholar
  35. 35.
    F. Peruani, M. Choudhury, A. Mukherjee, and N. Ganguly, Europhys. Lett. 79, 28001 (2007).CrossRefMathSciNetGoogle Scholar
  36. 36.
    R. Guimera, M. Sales-Pardo, and L.A. Nunes Amaral, Phys. Rev. E 76, 036102 (2007).CrossRefGoogle Scholar
  37. 37.
    A.-L. Barabasi, H. Jeong, and R. Albert, Physica A 272, 173 (1999).CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.CEA-Service de Physique de l’Etat CondenséCentre d’Etudes de SaclayGif-sur-YvetteFrance

Personalised recommendations