Skip to main content

Detection of Disease Clustering

  • Chapter
  • First Online:
Scan Statistics

Part of the book series: Statistics for Industry and Technology ((SIT))

  • 1883 Accesses

Abstract

In epidemiological studies, it is often of interest to evaluate whether a disease is randomly distributed over time and/or space after being adjusted for a known heterogeneity, which may provide clues to the etiology of disease. To do this, we can apply tests for spatial randomness, or disease clustering. In this paper, I review the existing tests for disease clustering and discuss the advantages and disadvantages of these test statistics. These tests are illustrated and compared with several real temporal and spatial data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Assunção R., Costa M., Tavares A. and Ferreira S. (2006). Fast detection of arbitrarily shaped disease clusters, Statistics in Medicine, 25, 723–742.

    Article  MathSciNet  Google Scholar 

  2. Bailar III J.C., Eisenberg H. and Mantel N. (1970). Time between pairs of leukemia cases, Cancer, 25, 1301–1303.

    Article  Google Scholar 

  3. Besag J.E. and Newell J. (1991). The detection of clusters in rare diseases, Journal of the Royal Statistical Society, Series A, 154, 143–155.

    Google Scholar 

  4. Bonetti M. and Pagano M. (2005). The interpoint distance distribution as a descriptor of point patterns, with an application to spatial disease clustering, Statistics in Medicine, 24, 753–773.

    Article  MathSciNet  Google Scholar 

  5. Cuzick J.C. and Edwards R. (1990). Spatial clustering for inhomogeneous populations, Journal of the Royal Statistical Society, Series B, 52, 73–104.

    MATH  MathSciNet  Google Scholar 

  6. Duczmal L. and Assunção R. (2004). A simulated annealing strategy for the detection of arbitrarily shaped clusters, Computational Statistics and Data Analysis, 45, 269–286.

    Article  MATH  MathSciNet  Google Scholar 

  7. Dwass M. (1957). Modified randomization test for nonparametric hypotheses, Annals of Mathematical Statistics, 28, 181–187.

    Article  MATH  MathSciNet  Google Scholar 

  8. Ederer F., Myers M.H. and Mantel N. (1964). A statistical problem in space and time: do leukemia cases come in clusters? Biometrika, 20, 626–638.

    Google Scholar 

  9. Geary R.C. (1954). The contiguity ratio and statistical mapping, The Incorporated Statistician, 5, 115–145.

    Article  Google Scholar 

  10. Grimson R.C., Wang K.C. and Johnson P.W.C. (1981). Searching for hierarchical clusters of disease: spatial patterns of sudden infant death syndrome, Social Science & Medicine, 15D, 287–293. Hechtor H.H. and Borhan N.O. (1965).

    Google Scholar 

  11. Knox G. (1959). Secular pattern of congenital oesophageal atresia, British Journal of Preventive Social Medicine, 13, 222–226.

    Google Scholar 

  12. Knox E.G. and Lancashire R. (1982). Detection of minimal epidemics, Statistics in Medicine, 1, 183–189.

    Article  Google Scholar 

  13. Kulldorff M. (1997). A spatial scan statistic, Communications in Statistics: Theory and Methods, 26, 1481–1496.

    Article  MATH  MathSciNet  Google Scholar 

  14. Kulldorff M. (1998). Statistical methods for spatial epidemiology: tests for randomness. In GIS and Health, (Ed., Gatrell A. and Loytonen M.), 49–62, Taylor & Francis, London.

    Google Scholar 

  15. Kulldorff M. (2006). Tests for spatial randomness adjusted for an inhomogeneity: a general framework, Journal of American Statistical Association, 101, 1289–1305.

    Article  MATH  MathSciNet  Google Scholar 

  16. Kulldorff M. and Nagarwalla N. (1995). Spatial disease clusters: detection and inference, Statistics in Medicine, 14, 799–810.

    Article  Google Scholar 

  17. Kulldorff M., Tango T. and Park P.J. (2003). Power comparisons for disease clustering tests, Computational Statistics and Data Analysis, 42, 665–684.

    Article  MATH  MathSciNet  Google Scholar 

  18. Kulldorff M. and Information Management Services, Inc. (2007). SaTScan v7.0: Software for the spatial and space-time scan statistics, http://www.satscan.org/

  19. Larsen R.J., Holmes C.L. and Heath C.W. (1973). A statistical test for measuring unimodal clustering: a description of the test and of its application to cases of acute leukemia in metropolitan Atlanta, Georgia, Biometrics, 29, 301–309.

    Article  MathSciNet  Google Scholar 

  20. Lawson A.B., Browne W.J. and Vidal Rodeiro C.L. (2003). Disease Mapping with WinBUGS and MLwiN, John Wiley & Sons, Chichester.

    Book  Google Scholar 

  21. Lawson A.B. and Kleinman K. (eds.) (2005). Spatial & Syndromic Surveillance for Public Health, John Wiley & Sons, New York

    Google Scholar 

  22. Mantel N., Kryscio R.J. and Myers M.H. (1976). Tables and formulas for extended use of the Ederer-Myers-Mantel disease clustering procedure, American Journal of Epidemiology, 104, 576–584.

    Google Scholar 

  23. Molinari N., Bonaldi, C. and Daures, J.P. (2001). Multiple temporal cluster detection. Biometrics, 57, 577–583.

    Article  MATH  MathSciNet  Google Scholar 

  24. Nagarwalla N. (1996). A scan statistic with a variable window. Statistics in Medicine, 15, 845–850.

    Article  Google Scholar 

  25. Naus J.I. (1965). The distribution of the size of the maximum cluster of points on a line, Journal of the American Statistical Association, 60, 532–538.

    Article  MathSciNet  Google Scholar 

  26. Naus J.I. (1966). A power comparison of two tests of non-random clustering, Technometrics, 8, 493–517.

    Article  MATH  MathSciNet  Google Scholar 

  27. Ohno Y., Aoki K. and Aoki N. (1979). A test of significance for geographic clusters of disease, International Journal of Epidemiology, 8, 273–281.

    Article  Google Scholar 

  28. Ohno Y. and Aoki K. (1981). Cancer deaths by city and county in Japan: a test of significance for geographic clustering of disease, Social Science & Medicine, 15D, 251–258.

    Google Scholar 

  29. Openshaw S., Craft A.W., Charlton M. and Birth J.M. (1988). Investigation of leukemia clusters by use of a geographical analysis machine, Lancet, 1(8580), 272–273.

    Article  Google Scholar 

  30. Patil G. P. and Taillie C. (2004). Upper level set scan statistic for detecting arbitrarily shaped hotspots, Environmental and Ecological Statistics, 11, 183–197.

    Article  MathSciNet  Google Scholar 

  31. Song C. and Kulldorff M. (2003). Power evaluation of disease clustering tests, International Journal of Health Geographics, 2, 9.

    Article  Google Scholar 

  32. Song C. and Kulldorff M. (2005). Tango’s maximized excess events test with different weights, International Journal of Health Geographics, 4, 32.

    Article  Google Scholar 

  33. Takahashi K., Yokoyama T. and Tango T. (2007). FleXScan: Software for the Flexble Scan Statistic. v2.0. http://www.niph.go.jp/soshiki/gijutsu/ index_e.html/.

  34. Tango T. (1984). The detection of disease clustering in time, Biometrics, 40, 15–26.

    Article  Google Scholar 

  35. Tango T. (1990). Asymptotic distribution of an index for disease clustering, Biometrics, 46, 351–357.

    Article  MATH  MathSciNet  Google Scholar 

  36. Tango T. (1995). A class of tests for detecting “general” and “focused” clustering of rare diseases, Statistics in Medicine, 14, 2323–2334.

    Article  Google Scholar 

  37. Tango T. (1999). Comparison of general tests for disease clustering, In Disease Mapping and Risk Assessment for Public Health, (Ed., A.B. Lawson et al.), pp. 111–117, Wiley & Sons, New York.

    Google Scholar 

  38. Tango T. (2000). A test for spatial disease clustering adjusted for multiple testing, Statistics in Medicine, 19, 191–204.

    Article  Google Scholar 

  39. Tango T. and Takahashi K. (2005). A flexibly shaped spatial scan statistic for detecting clusters, International Journal of Health Geographics, 4, 11. http://www.ij-healthgeographics.com/content/4/1/11

  40. Tango T. (2007). A class of multiplicity adjusted tests for spatial clustering based on case-control point data, Biometrics, 63, 119–127.

    Article  MATH  MathSciNet  Google Scholar 

  41. Turnbull B.W., Iwano E.J., Burnnett W.S., Howe H.L. and Clark LC. (1990). Monitoring for clusters of disease: application to leukemia incidence in upstate New York, American Journal of Epidemiology, 132, suppl. S136–143.

    Google Scholar 

  42. Wallenstein S. (1980). A test for detection of clustering over time, American Journal of Epidemiology, 111, 367–372.

    Google Scholar 

  43. Wallenstein S. and Neff N. (1987). An approximation for the distribution of the scan statistic. Statistics in Medicine, 6, 197–207.

    Article  Google Scholar 

  44. Weinstock M.A. (1981). A generalized scan statistic test for the detection of clusters, International Journal of Epidemiology, 10, 289–93.

    Article  Google Scholar 

  45. Whittemore A. and Keller J.B. (1986). A letter to the editor. On Tango’s index of disease clustering in time, Biometrics, 42, 218.

    Google Scholar 

  46. Whittemore A.S., Friend N., Brown B.W. and Holly E.A. (1987). A test to detect clusters of disease, Biometrika, 74, 631–635.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Boston, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tango, T. (2009). Detection of Disease Clustering. In: Glaz, J., Pozdnyakov, V., Wallenstein, S. (eds) Scan Statistics. Statistics for Industry and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4749-0_17

Download citation

Publish with us

Policies and ethics