Skip to main content

Part of the book series: Progress in Mathematics ((PM,volume 271))

Abstract

This article is a summary of some of the author’s work on Sasaki–Einstein geometry. A rather general conjecture in string theory known as the AdS/CFT correspondence relates Sasaki–Einstein geometry, in low dimensions, to superconformal field theory; properties of the latter are therefore reflected in the former, and vice versa. Despite this physical motivation, many recent results are of independent geometrical interest and are described here in purely mathematical terms: explicit constructions of infinite families of both quasi-regular and irregular Sasaki–Einstein metrics; toric Sasakian geometry; an extremal problem that determines the Reeb vector field for, and hence also the volume of, a Sasaki–Einstein manifold; and finally, obstructions to the existence of Sasaki–Einstein metrics. Some of these results also provide new insights into Kähler geometry, and in particular new obstructions to the existence of Kähler–Einstein metrics on Fano orbifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Apostolov, D. M. Calderbank, P. Gauduchon, “The geometry of weakly selfdual Kähler surfaces,” Compositio Math. 135 (2003), 279–322.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Bergman, C. P. Herzog, “The volume of some non-spherical horizons and the AdS/CFT correspondence,” JHEP 0201, 030 (2002) [arXiv:hep-th/0108020].

    Google Scholar 

  3. R. L. Bishop, R. J. Crittenden, “Geometry of Manifolds,” Academic Press, New York, 1964.

    MATH  Google Scholar 

  4. C. P. Boyer, K. Galicki, “On Sasakian–Einstein geometry,” Int. J. Math. 11 (2000), no. 7, 873–909 [arXiv:math.DG/9811098].

    Article  MATH  MathSciNet  Google Scholar 

  5. C. P. Boyer, K. Galicki, “A note on toric contact geometry,” J. Geom. Phys. 35 No. 4 (2000), 288–298, [arXiv:math.DG/9907043].

    Article  MATH  MathSciNet  Google Scholar 

  6. C. P. Boyer, K. Galicki, “Sasakian Geometry, Hypersurface Singularities, and Einstein Metrics,” Supplemento ai Rendiconti del Circolo Matematico di Palermo Serie II. Suppl 75 (2005), 57–87 [arXiv:math.DG/0405256].

    MathSciNet  Google Scholar 

  7. C. P. Boyer, K. Galicki, “Sasakian Geometry,” Oxford Mathematical Monographs, Oxford University Press, ISBN-13: 978-0-19-856495-9.

    Google Scholar 

  8. C. P. Boyer, K. Galicki, S. R. Simanca, “Canonical Sasakian Metrics,” Commun. Math. Phys. 279 (2008), 705–733.

    Article  MATH  MathSciNet  Google Scholar 

  9. E. Calabi, “Extremal Kähler metrics II,” in “Differential Geometry and Complex Analysis” (ed. I. Chavel and H. M. Farkas), Springer-Verlag, Berlin, 1985.

    Google Scholar 

  10. J. Cheeger, G. Tian, “On the cone structure at infinity of Ricci flat manifolds with Euclidean volume growth and quadratic curvature decay,” Invent. Math. 118 (1994), no. 3, 493–571.

    Article  MATH  MathSciNet  Google Scholar 

  11. W. Chen, H. Lu, C. N. Pope, J. F. Vazquez-Poritz, “A note on Einstein–Sasaki metrics in D ≥ 7,” Class. Quant. Grav. 22 (2005), 3421–3430 [arXiv:hep-th/0411218].

    Article  MATH  MathSciNet  Google Scholar 

  12. D. Conti, “Cohomogeneity one Einstein-Sasaki 5-manifolds,” arXiv:math.DG/0606323.

    Google Scholar 

  13. M. Cvetic, H. Lu, D. N. Page, C. N. Pope, “New Einstein-Sasaki spaces in five and higher dimensions,” Phys. Rev. Lett. 95, 071101 (2005) [arXiv:hep-th/0504225].

    Article  MathSciNet  Google Scholar 

  14. M. Cvetic, H. Lu, D. N. Page, C. N. Pope, “New Einstein-Sasaki and Einstein spaces from Kerr-de Sitter,” arXiv:hep-th/0505223.

    Google Scholar 

  15. J. J. Duistermaat, G. Heckman, “On the variation in the cohomology of the symplectic form of the reduced space,” Inv. Math. 69, 259–268 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  16. J. J. Duistermaat, G. Heckman, Addendum, Inv. Math. 72, 153–158 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  17. S. Falcao de Moraes, C. Tomei, “Moment maps on symplectic cones,” Pacific J. Math. 181 (2) (1997), 357–375.

    Article  MATH  MathSciNet  Google Scholar 

  18. Th. Friedrich, I. Kath, “Einstein manifolds of dimension five with small first eigenvalue of the Dirac operator,” J. Differential Geom. 29 (1989), 263–279.

    MATH  MathSciNet  Google Scholar 

  19. A. Futaki, “An obstruction to the existence of Einstein Kähler metrics,” Invent. Math., 73 (1983), 437–443.

    Article  MATH  MathSciNet  Google Scholar 

  20. A. Futaki, H. Ono, G. Wang, “Transverse Kähler geometry of Sasaki manifolds and toric Sasaki–Einstein manifolds,” arXiv:math.DG/0607586.

    Google Scholar 

  21. J. P. Gauntlett, D. Martelli, J. Sparks, D. Waldram, “Supersymmetric AdS5 solutions of M-theory,” Class. Quant. Grav. 21, 4335 (2004) [arXiv:hep-th/0402153].

    Article  MATH  MathSciNet  Google Scholar 

  22. J. P. Gauntlett, D. Martelli, J. Sparks, D. Waldram, “Sasaki–Einstein metrics on S2 ×S3,” Adv. Theor. Math. Phys. 8, 711 (2004) [arXiv:hep-th/0403002].

    MATH  MathSciNet  Google Scholar 

  23. J. P. Gauntlett, D. Martelli, J. F. Sparks, D. Waldram, “A new infinite class of Sasaki–Einstein manifolds,” Adv. Theor. Math. Phys. 8, 987 (2004) [arXiv:hep-th/0403038].

    MATH  MathSciNet  Google Scholar 

  24. J. P. Gauntlett, D. Martelli, J. Sparks, D. Waldram, “Supersymmetric AdS Backgrounds in String and M-theory,” IRMA Lectures in Mathematics and Theoretical Physics, vol. 8, published by the European Mathematical Society [arXiv:hep-th/0411194].

    Google Scholar 

  25. J. P. Gauntlett, D. Martelli, J. Sparks, S.-T. Yau, “Obstructions to the existence of Sasaki– Einstein metrics,” Commun. Math. Phys. 273, 803–827 (2007) [arXiv:hep-th/0607080].

    Article  MATH  MathSciNet  Google Scholar 

  26. A. Haefliger, “Groupoides d’holonomie et classifiants,” Astérisque 116 (1984), 70–97.

    MathSciNet  Google Scholar 

  27. E. Kähler, “Ü ber eine bemerkenswerte Hermitesche Metrik,” Abh. Math. Sem. Hamburg Univ. 9 (1933), 173–186.

    Article  Google Scholar 

  28. J. Koll á r, Y. Miyaoka, S. Mori, “Rational connectedness and boundedness of Fano manifolds,” J. Diff. Geom. 36, 765–769 (1992).

    Google Scholar 

  29. E. Lerman, “Contact toric manifolds,” J. Symplectic Geom. 1 (2003), no. 4, 785–828 [arXiv:math.SG/0107201].

    MATH  MathSciNet  Google Scholar 

  30. A. Lichnerowicz, “Géometrie des groupes de transformations,” III, Dunod, Paris, 1958.

    Google Scholar 

  31. J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)] [arXiv:hep-th/9711200].

    MATH  MathSciNet  Google Scholar 

  32. D. Martelli, J. Sparks, “Toric geometry, Sasaki–Einstein manifolds and a new infinite class of AdS/CFT duals,” Commun. Math. Phys. 262, 51 (2006) [arXiv:hep-th/0411238].

    Article  MATH  MathSciNet  Google Scholar 

  33. D. Martelli, J. Sparks, “Toric Sasaki–Einstein metrics on S 2 × S 3,” Phys. Lett. B 621, 208 (2005) [arXiv:hep-th/0505027].

    Article  MathSciNet  Google Scholar 

  34. D. Martelli, J. Sparks, S.-T. Yau, “The geometric dual of a-maximisation for toric Sasaki– Einstein manifolds,” Commun. Math. Phys. 268, 39–65 (2006) [arXiv:hep-th/0503183].

    Article  MATH  MathSciNet  Google Scholar 

  35. D. Martelli, J. Sparks, S.-T. Yau, “Sasaki–Einstein Manifolds and Volume Minimisation,” Commun. Math. Phys. 280 (2008), 611–673 arXiv:hep-th/0603021.

    Article  MATH  MathSciNet  Google Scholar 

  36. S. Minakshisundaram, A. Pleijel, “Some properties of the eigenfunctions of the Laplace– operator on Riemannian manifolds,” Canadian J. Math. 1 (1949), 242–256.

    MATH  MathSciNet  Google Scholar 

  37. S. B. Myers, “Riemannian manifolds with positive mean curvature,” Duke Math. J. 8 (1941), 401–404.

    Article  MathSciNet  Google Scholar 

  38. M. Obata, “Certain conditions for a Riemannian manifold to be isometric to a sphere,” J. Math. Soc. Japan 14 (1962), 333–340.

    Article  MATH  MathSciNet  Google Scholar 

  39. S. Sasaki, “On differentiable manifolds with certain structures which are closely related to almost contact structure,” Tôhoku Math. J. 2 (1960), 459–476.

    Article  Google Scholar 

  40. N. Seiberg, “Electric - magnetic duality in supersymmetric nonAbelian gauge theories,” Nucl. Phys. B 435, 129 (1995) [arXiv:hep-th/9411149].

    Article  MATH  MathSciNet  Google Scholar 

  41. S. Smale, “On the structure of 5-manifolds,” Ann. Math. 75 (1962), 38–46.

    Article  MathSciNet  Google Scholar 

  42. S. Tanno, “Geodesic flows on C L -manifolds and Einstein metrics on S 3 × S 2,” in “Minimal Submanifolds and Geodesics” (Proc. Japan-United States Sem., Tokyo, 1977), pp. 283–292, North Holland, Amsterdam and New York, 1979.

    Google Scholar 

  43. G. Tian, “On Kähler–Einstein metrics on certain Kähler manifolds with c 1(M) > 0,” Invent. Math. 89 (1987) 225–246.

    Article  MATH  MathSciNet  Google Scholar 

  44. G. Tian, S.-T. Yau, “On Kähler–Einstein metrics on complex surfaces with C 1 > 0,” Commun. Math. Phys. 112 (1987) 175–203.

    Article  MATH  MathSciNet  Google Scholar 

  45. S.-T. Yau, “Open problems in geometry,” Proc. Symp. Pure Math. 54 (1993), 1–28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Boston, a part of Springer Science+Business Media LLC

About this chapter

Cite this chapter

Sparks, J. (2009). New Results in Sasaki—Einstein Geometry. In: Galicki, K., Simanca, S.R. (eds) Riemannian Topology and Geometric Structures on Manifolds. Progress in Mathematics, vol 271. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4743-8_8

Download citation

Publish with us

Policies and ethics