The 1-Nullity of Sasakian Manifolds

  • Philippe Rukimbira
Part of the Progress in Mathematics book series (PM, volume 271)


On a closed, (2n + 1)-dimensional Sasakian manifold, we show that either the dimension of the 1-nullity distribution N(1) is less than or equal to n, or N(1) is the entire tangent bundle TM. In the latter case, the Sasakian manifold M is isometric to a quotient of the Euclidean sphere under a finite group of isometries.


Riemannian Manifold Sectional Curvature Unit Tangent Vector Contact Manifold Sasakian Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Baikoussis, D.E. Blair & T. Koufogiorgos, A decomposition of the curvature tensor of a contact manifold with ξ in N(k), Mathematics Technical Report, University of Ioannina (Greece) (1992).Google Scholar
  2. 2.
    T.Q. Binh & L. Tam á ssy, Galloway’s compactness theorem on Sasakian manifolds, Aequa-tiones Math. 58 (1999), 118–124.MATHGoogle Scholar
  3. 3.
    D.E. Blair, T. Koufogiorgos & B.T. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math. 91 (1995), 189–214.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    D. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics 203, Birkhäuser, Boston, 2002.Google Scholar
  5. 5.
    D.E. Blair, Two remarks on contact metric structures, Tôhoku Math. J. 29 (1977), 319–324.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    E. Boeckx, A full classification of contact metric (k,μ)-spaces, Illinois J. Math. 44 (2000), 212–219.MATHMathSciNetGoogle Scholar
  7. 7.
    C.P. Boyer, K. Galicki & B.M. Mann, Quaternionic reduction and Einstein manifolds, Commun. Anal. Geom. 1 (1993), 229–279.MATHMathSciNetGoogle Scholar
  8. 8.
    T. Frankel, On the fundamental group of a compact minimal submanifold, Ann. Math. 83 (1966), 68–73.CrossRefMathSciNetGoogle Scholar
  9. 9.
    J. Milnor, Morse Theory, Annals of Mathematics Studies 51, Princeton University Press, Princeton, NJ, 1968.Google Scholar
  10. 10.
    P. Rukimbira, Rank and k-nullity of contact manifolds, Int. J. Math. Math. Sci. 20 (2004), 1025–1034.CrossRefMathSciNetGoogle Scholar
  11. 11.
    R. Sharma, On the curvature of contact metric manifolds, J. Geom. 53 (1995), 179–190.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    S. Tanno, Some differential equations on Riemannian manifolds, J. Math. Soc. Japan 30 (1978), 509–531.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    J.A. Wolf, Spaces of constant curvature, McGraw-Hill, New York, 1967.MATHGoogle Scholar

Copyright information

© Birkhäuser Boston, a part of Springer Science+Business Media LLC 2009

Authors and Affiliations

  • Philippe Rukimbira
    • 1
  1. 1.Department of MathematicsFlorida International UniversityMiamiUSA

Personalised recommendations