Homological Mirror Symmetry and Algebraic Cycles

  • Ludmil Katzarkov
Part of the Progress in Mathematics book series (PM, volume 271)


In this paper we describe a Homological Mirror Symmetry approach to classical problems in Algebric Geometry — rationality questions and the Hodge conjecture. Several examples are studied in detail.


Toric Variety Abelian Variety Coherent Sheave Algebraic Cycle Homological Mirror Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Abouzaid, On the Fukaya category of higher genus surfaces, preprint arXiv:math/0606598.Google Scholar
  2. 2.
    M. Abouzaid, D. Auroux, M. Gross & L. Katzarkov, Homological mirror symmetry and Birational Geometry, in preparation.Google Scholar
  3. 3.
    V. Alexev, Complete moduli in the presence of semiabelian group action, Ann. Math. (2) 155 (2002), 3, pp. 611–708.CrossRefGoogle Scholar
  4. 4.
    D. Auroux, Mirror symmetry and T-duality in the complement of an anticanonical divisor, preprint arXiv:0706.3207.Google Scholar
  5. 5.
    D. Auroux, L. Katzarkov, S. Donaldson & M. Yotov, Fundamental groups of complements of plane curves and symplectic invariants, Topology 43 (2004), 6, pp. 1285–1318.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    D. Auroux, L. Katzarkov & D. Orlov, Mirror symmetry for Del Pezzo surfaces: Vanishing cycles and coherent sheaves, Invent. Math. (3) 166 (2006), pp. 537–582.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    D. Auroux, L. Katzarkov, T. Pantev & D. Orlov, Mirror symmetry for Del Pezzo surfaces II, in preparation.Google Scholar
  8. 8.
    F. Bardelli, Polarized mixed Hodge structures: on irrationality of threefolds via degeneration, Ann. Mat. Pura Appl. (4) 137 (1984), pp. 287–369.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    A. Beauville & R. Donagi, La varité des droites d’une hypersurface cubique de dimension 4, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), 14, pp. 703–706.MATHMathSciNetGoogle Scholar
  10. 10.
    F. Bogomolov, The Brauer group of quotient spaces of linear representations, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), 3, pp. 485–516.MATHGoogle Scholar
  11. 11.
    H. Clemens, Cohomology and obstructions II, AG 0206219.Google Scholar
  12. 12.
    H. Clemens & P. Griffiths, The intermediate Jacobian of the cubic threefold, Ann. Math. (2) 95 (1972), pp. 281–356.CrossRefMathSciNetGoogle Scholar
  13. 13.
    D. Cox & S. Katz, Mirror symmetry and algebraic geometry, Mathematical Surveys and Monographs, vol. 68, American Mathematical Society, Providence, RI, 1999.Google Scholar
  14. 14.
    T. deFernex, Adjunction beyond thresholds and birationally rigid hypersurfaces, AG/0604213.Google Scholar
  15. 15.
    M. Green & P. Griffiths, Algebraic Cycles I, II, preprints 2006.Google Scholar
  16. 16.
    M. Gross & L. Katzarkov, Mirror Symmetry and vanishing cycles, in preparation.Google Scholar
  17. 17.
    M. Gross & B. Siebert, Mirror Symmetry via logarithmic degeneration data I, J. Diff. Geom. (2) 72 (2006), pp. 169–338.MATHMathSciNetGoogle Scholar
  18. 18.
    B. Hassett, Some rational cubic fourfolds. J. Algebraic Geom. 8 (1999), 1, pp. 103–114.MATHMathSciNetGoogle Scholar
  19. 19.
    K. Hori, S. Katz, A. Klemm, R. Pandharipande, R. Thomas, C. Vafa, R. Vakil & E. Zaslow, Mirror symmetry, Clay Mathematics Monographs, vol. 1, American Mathematical Society, Providence, RI, 2003.Google Scholar
  20. 20.
    K. Hori & C. Vafa, Mirror symmetry, 2000, hep-th/0002222.Google Scholar
  21. 21.
    V.A. Iskovskikh, On Rationality Criteria for Connic Bundles, Mat. Sb. (1996), 7, pp. 75–92.MathSciNetGoogle Scholar
  22. 22.
    V.A. Iskovskikh & Y.I. Manin, Three-dimensional quartics and counterexamples to the L ü roth problem, Mat. Sb. (N.S.) 86 (1971), pp. 140–166.MathSciNetGoogle Scholar
  23. 23.
    A. Iliev & L. Manivel, Cubic hypersurfaces and integrable systems, preprint 0606211.Google Scholar
  24. 24.
    A. Kapustin, L. Katzarkov, D. Orlov & M. Yotov, Homological mirror symmetry for manifolds of general type, 2004, preprint.Google Scholar
  25. 25.
    L. Katzarkov, Mirror symmetry and nonrationality, Rationality, Tschinckel and Bogomolov Eds., Birkhauser 2008.Google Scholar
  26. 26.
    L. Katzarkov & M. Kontsevich, Homological Mirror Symmetry and the Hodge conjecture, in preparation.Google Scholar
  27. 27.
    L. Katzarkov, M. Kontsevich & T. Pantev, Hodge Theoretic Aspects of Mirror Symmetry, arXiv:0806.0107, Proc. Amer. Math. Soc. (to appear).Google Scholar
  28. 28.
    G. Kerr, Weighted Blow-ups and HMS for toric surfaces, preprint, to appear in Advances in Mathematics.Google Scholar
  29. 29.
    J. Koll á r, Singularities of pairs, in Algebraic geometry, Santa Cruz 1995, pp. 221–287, Proc. Sympos. Pure Math., 62, Part 1, Am. Math. Soc., Providence, RI, 1997.Google Scholar
  30. 30.
    M. Kontsevich & Y. Soibelman, Homological mirror symmetry and torus fibrations, Symplectic geometry and mirror symmetry (Seoul, 2000), pp. 203–263, World Sci. Publ., River Edge, NJ, 2001.CrossRefGoogle Scholar
  31. 31.
    A. Kuznetsov, Derived Categories of the Cubic and V 14 Fano, preprint, arXiv:math/0303037Google Scholar
  32. 32.
    G. Mikhalkin, Tropical geometry and applications, preprint arXiv:math/0601041.Google Scholar
  33. 33.
    D. Orlov, Derived categories of coherent sheaves and equivalences between them, Uspekhi Mat. Nauk 58 (2003), no. 3 (351), pp. 89–172; translation in Russian Math. Surveys 58 (2003), no. 3, pp. 511–591.Google Scholar
  34. 34.
    D. Orlov, Triangulated categories of singularities and D-branes in Landau—Ginzburg models, Tr. Mat. Inst. Steklova, 246 (Algebr. Geom. Metody, Svyazi i Prilozh., pp. 240–262, 2004.Google Scholar
  35. 35.
    A. Pukhlikov, Birationally rigid Fano varieties, The Fano Conference, pp. 659–681, Univ. Torino, Turin, 2004.Google Scholar
  36. 36.
    P. Seidel, Vanishing cycles and mutation, European Congress of Mathematics, vol. II (Barcelona, 2000), pp. 65–85, Progr. Math., 202, Birkhäuser, Basel, 2001.Google Scholar
  37. 37.
    P. Seidel, Fukaya categories and deformations, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), pp. 351–360, Higher Ed. Press, Beijing, 2002.Google Scholar
  38. 38.
    C. Voisin, Torelli theorems for cubics in Cℙ5, Inv. Math. 86, 1986, 3, pp. 577–601.MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    A. Weil, On algebraic cycles in Abelian varieties, Scientific works. Collected papers. vol. III, Springer-Verlag, New York and Heidelberg, 1979.Google Scholar
  40. 40.
    J. Wlodarczyk, Birational cobordisms and factorization of birational maps, J. Algebraic Geom. 9 (2000), 3, pp. 425–449.MATHMathSciNetGoogle Scholar
  41. 41.
    S. Zucker, The Hodge conjecture for four-dimensional cubic, Comp. Math. 34 (1977), pp. 199–209.MATHMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Boston, a part of Springer Science+Business Media LLC 2009

Authors and Affiliations

  • Ludmil Katzarkov
    • 1
  1. 1.Department of MathematicsUniversity of MiamiCoral GablesUSA

Personalised recommendations