Advertisement

Quaternionic Kähler Moduli Spaces

  • Nigel Hitchin
Part of the Progress in Mathematics book series (PM, volume 271)

Abstract

We describe in differential-geometric language a class of naturally occurring quaternionic Kähler moduli spaces due originally to the physicists Ferrara and Sabharwal. This class yields an example in real dimension 4n for every projective special Kähler manifold of real dimension 2n-2 and can be applied in particular to the case of the moduli space of complex structures on a Calabi—Yau threefold.

Keywords

Modulus Space Line Bundle Tangent Bundle Heisenberg Group Symplectic Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.L. Besse, “Einstein manifolds,” Ergebnisse der Mathematik und ihrer Grenzgebiete 10 Springer-Verlag, Berlin (1987).Google Scholar
  2. 2.
    C. Birkenhake & H. Lange, “Complex tori,” Progress in Mathematics, 177 Birkhäuser Boston Inc., Boston, MA (1999).Google Scholar
  3. 3.
    C.P. Boyer & K. Galicki, “Sasakian Geometry,” Oxford University Press, Oxford, (2008).MATHGoogle Scholar
  4. 4.
    S. Cecotti, S. Ferrara & L. Girardello, Geometry of type II superstrings and the moduli of superconformal field theories, Int. J. Mod. Phys. A 4 (1989) 2475–2529.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    V. Cortés, On hyper-Kähler manifolds associated to Lagrangian Kähler submanifolds of T*C n, Trans. Am. Math. Soc. 350 (1998) 3193–3205.MATHCrossRefGoogle Scholar
  6. 6.
    S. Ferrara & S. Sabharwal, Quaternionic manifolds for type II superstring vacua of Calabi-Yau spaces, Nucl. Phys. B 332 (1990) 317–332.CrossRefMathSciNetGoogle Scholar
  7. 7.
    D.S. Freed, Special Kähler manifolds, Commun. Math. Phys. 203 (1999) 31–52.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    N.J. Hitchin, The moduli space of complex Lagrangian submanifolds, Asian J. Math. 3 (1999) 77–91.MATHMathSciNetGoogle Scholar
  9. 9.
    N.J. Hitchin, The geometry of three-forms in six dimensions, J. Differential Geom. 55 (2000) 547–576.MATHMathSciNetGoogle Scholar
  10. 10.
    N.J. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. Oxford, 54 (2003) 281–308.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    S. Salamon, “Riemannian geometry and holonomy groups,” Pitman Research Notes in Mathematics 201, Longman, Harlow (1989).Google Scholar
  12. 12.
    A. Swann, Hyperkähler and quaternionic Kähler geometry, Math.Ann. 289 (1991) 421–450.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Boston, a part of Springer Science+Business Media LLC 2009

Authors and Affiliations

  • Nigel Hitchin
    • 1
  1. 1.Mathematical InstituteUniversity of OxfordOxfordU.K.

Personalised recommendations