Advertisement

Hirzebruch Surfaces and Weighted Projective Planes

  • Paul Gauduchon
Part of the Progress in Mathematics book series (PM, volume 271)

Abstract

For any positive integer, we show that the standard self-dual orbifold Kähler structure of the weighted projective surface ℙ1,1,k can be realized as a limit of the Hirzebruch surface F k , equipped with a sequence of Calabi extremal Kähler metrics whose Kähler classes tend to the boundary of the Kähler cone, and that this collapsing process is compatible with the natural toric structures of ℙ1,1,k and F k .

In reference to [25], nontrivial (geometrically) ruled surfaces of genus zero are usually called Hirzebruch surfaces. The first Hirzebruch surface F1 is well-known to be the blow-up of the complex projective plane at one point; more generally, the k-th Hirzebruch surface F k is the blow-up of the weighted projective plane \(\mathbb{P}_k^2 \) of weight k = (1,1,k) at its (unique) singular point, cf., e.g., [19]. The aim of this article is to show that, for any fixed positive integer k, the weighted projective plane \(\mathbb{P}_k^2 \), equipped with its standard self-dual orbifold Kähler metric — cf. Section 1 — can be viewed as a limit of the Hirzebruch surface F k , when the latter is equipped with a sequence of Calabi extremal Kähler metrics whose Kähler classes tend to the boundary of the Kähler cone. Moreover, we show that this limiting — or collapsing — process fits nicely with the natural toric structures of F k and \(\mathbb{P}_k^2 \).

Notice that our construction can be regarded as an illustration of the general weak compactness theorem recently established by X. Chen and B. Weber in [16], cf. also [15].

In order to make this paper reasonably self-contained, we included a somewhat detailed exposition of the Bochner-flat Kähler metrics of weighted projective spaces in general (Section 1), of Calabi extremal Kähler metrics on Hirzebruch surfaces (Section 2), and of their toric structures (Section 3). The limiting process itself is firstly described in the toric setting in Section 3, then, in a more precise formulation — cf. Theorem 2 — in Section 4.

Keywords

Line Bundle Scalar Curvature Ahler Manifold Weighted Projective Space Ahler Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Abreu, K ähler metrics on toric orbifolds, J. Differential Geom. 58 (2001), 151–187.MATHMathSciNetGoogle Scholar
  2. 2.
    V. Apostolov, D. M. J. Calderbank, P. Gauduchon, The geometry of weakly self-dual Kähler surfaces, Compositio Math. 135, No. 3 (2003), 279–322.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    V. Apostolov, D. M. J. Calderbank, P. Gauduchon, C. W. Tønnesen-Friedman, Hamiltonian 2-forms in Kähler geometry, II: Global classification, J. Differential Geom. 68 (2004), 277–345.MATHMathSciNetGoogle Scholar
  4. 4.
    V. Apostolov, D. M. J. Calderbank, P. Gauduchon, C. W. Tønnesen-Friedman, Hamiltonian 2-forms in Kähler geometry, III: Extremal metrics and stability, Invent. Math. 173 (2008), 547–601.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    C. Arezzo, F. Pacard and M. Singer, Extremal metrics on blow-ups, arXiv:math.DG/ 0701028v1.Google Scholar
  6. 6.
    S. Bando and T. Mabuchi, Uniqueness of Einstein Kähler Metrics Modulo Connected Group Actions, Algebraic Geometry, Sendai (1985), 11–40, Adv. Stud. Pure Math. 10, North-Holland, Amsterdam and New York, 1987.Google Scholar
  7. 7.
    O. Biquard, M étriques kählériennes à courbure scalaire constante: unicité, stabilité, Séminaire Bourbaki, 57 ème année, 2004–2005, no 938, Novembre 2004.Google Scholar
  8. 8.
    C. Boyer and K. Galicki, Sasakian Geometry, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2008.MATHGoogle Scholar
  9. 9.
    R. Bryant, Bochner-Kähler metrics, J. Am. Math. Soc. 14 (2001), 623–715.MATHCrossRefGoogle Scholar
  10. 10.
    E. Calabi, Extremal Kähler metrics, in Seminar of Differerential Geometry, ed. S. T. Yau, Annals of Mathematics Studies 102, Princeton University Press (1982), 259–290.Google Scholar
  11. 11.
    E. Calabi, Extremal Kähler metrics, II, in Differential Geometry and Complex Analysis, eds. I. Chavel and H. M. Farkas, Springer-Verlag (1985), 95–114.Google Scholar
  12. 12.
    X. X. Chen and G. Tian, Uniqueness of extremal Khler metrics, C. R. Math. Acad. Sci. Paris 340, No. 4 (2005), 287–290.MATHMathSciNetGoogle Scholar
  13. 13.
    X. X. Chen and G. Tian, Partial regularity for homogeneous complex Monge-Ampere equations C. R. Math. Acad. Sci. Paris 340, No. 5 (2005), 337–340.MATHMathSciNetGoogle Scholar
  14. 14.
    X. X. Chen and G. Tian, Geometry of Kähler metrics and holomorphic foliation by discs, arXiv:math.DG/0507148 v1.Google Scholar
  15. 15.
    X. X. Chen, C. LeBrun and B. Weber, On conformally Kähler, Einstein manifolds, arXiv:0705.0710.Google Scholar
  16. 16.
    X. X. Chen and B. Weber, Moduli spaces of critical Riemannian metrics with L n/2-norm curvature bounds, arXiv:0705.4440.Google Scholar
  17. 17.
    T. Delzant, Hamiltoniens périodiques et images convexes de l’application moment, Bulletin de la S.M.F., tome 116, No. 3 (1988), 315–339.MATHMathSciNetGoogle Scholar
  18. 18.
    L. David, P. Gauduchon, The Bochner-Flat Geometry of Weighted Projective Spaces, CRM Proceedings and Lecture Notes, Volume 40 (2006), 109–156.MathSciNetGoogle Scholar
  19. 19.
    I. V. Dolgachev, Weighted Projective Varieties, in Group Actions and Vector Fields (Vancouver, B.C., 1981), Lecture Notes in Math. 956, Springer-Verlag (1982), 34–71.Google Scholar
  20. 20.
    S. K. Donaldson, Scalar curvature and projective embeddings, II, Q. J. Math. 56, No. 3 (2005), 345–356.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    S. K. Donaldson, Lower bounds on the Calabi functional, J. Differential Geom. 70 (3) (2005), 453–472.MATHMathSciNetGoogle Scholar
  22. 22.
    P. Gauduchon, Calabi extremal Kähler metrics. (lecture notes in progress).Google Scholar
  23. 23.
    V. Guillemin, K ähler structures on toric varieties, J. Differential Geom. 40 (1994), no. 2, 285–309.MATHMathSciNetGoogle Scholar
  24. 24.
    V. Guillemin, Moment Maps and Combinatorial Invariants of Hamiltonian Tn-Spaces, Progress in Mathematics 122, Birkäuser (1994).Google Scholar
  25. 25.
    F. Hirzebruch, Über eine Klasse von einfachzusammenhängenden komplexen Mannigfaltigkeiten, Math. Ann. 124 (1951), 77–86.MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    A. D. Hwang, On existence of Kähler metrics with constant scalar curvature, Osaka J. Math. 31 (1994), 561–595.MATHMathSciNetGoogle Scholar
  27. 27.
    A. D. Hwang and M. A. Singer, A momentum construction for circle-invariant Kähler metrics, Trans. Am. Math. Soc. 354 (2002), 2285–2325.MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    E. Lerman, S. Tolman, Hamiltonian torus actions on symplectic orbifolds and toric varieties, Trans. AMS, 349 (1997), 4201–4230.MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    T. Mabuchi, Uniqueness of extremal Kähler metrics for an integral Kähler class, Int. J. Math. 15, No. 6 (2004), 531–546.MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    G. Székelyhidi, Extremal metrics and K-stability (Ph.D. thesis), math.AG/0410401 v2 (1 Nov 2005).Google Scholar
  31. 31.
    G. Székelyhidi, The Calabi functional on a ruled surface, arXiv:math.DG/0703562v1.Google Scholar
  32. 32.
    C. W. Tønnesen-Friedman, Extremal metrics on minimal ruled surfaces, J. Reine Angew. Math. 502 (1998), 175–197.MathSciNetGoogle Scholar
  33. 33.
    S. M. Webster, On the pseudo-conformal geometry of Kähler manifolds, Math. Z. 157, No. 3, (1977), 265–270.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Boston, a part of Springer Science+Business Media LLC 2009

Authors and Affiliations

  • Paul Gauduchon
    • 1
  1. 1.École Polytechnique-UMRPalaiseauFrance

Personalised recommendations