Skip to main content

Lie Groups of Bundle Automorphisms and Their Extensions

  • Chapter
  • First Online:
Developments and Trends in Infinite-Dimensional Lie Theory

Part of the book series: Progress in Mathematics ((PM,volume 288))

Summary

We describe natural abelian extensions of the Lie algebra \(\mathfrak{aut}(P)\) of infinitesimal automorphisms of a principal bundle over a compact manifold M and discuss their integrability to corresponding Lie group extensions. The case of a trivial bundle P = M * K is already quite interesting. In this case, we show that essentially all central extensions of the gauge algebra C (M T) can be obtained from three fundamental types of cocycles with values in one of the spaces ℨ := C (M V), Ω1 (M V) and Ω1 (M V)/ dC (M V).These cocycles extend to \(\mathfrak{aut}(P)\), and, under the assumption that T M is trivial, we also describe the space H 2 (v(M), ℨ) classifying the twists of these extensions. We then show that all fundamental types have natural generalizations to non-trivial bundles and explain under which conditions they extend to \(\mathfrak{aut}(P)\) and integrate to global Lie group extensions.

2000 Mathematics Subject Classifications: Primary 22E65. Secondary 22E67, 17B66.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison, B. N., Berman, S., Faulkner, J. R., and A. Pianzola, Realization of graded-simple algebras as loop algebras, Forum Math. 20 :3 (2008), 395–432

    Article  MATH  MathSciNet  Google Scholar 

  2. Allison, B. N., S. Berman, and A. Pianzola, Iterated loop algebras, Pacific J. Math. 227 :1 (2006), 1–41

    Article  MATH  MathSciNet  Google Scholar 

  3. Abbati, M. C., R. Cirelli, A. Mania, and P. Michor, The Lie group of automorphisms of a principal bundle, JGP 6 :2 (1989), 215–235

    Article  MATH  MathSciNet  Google Scholar 

  4. Billig, Y., Principal vertex operator representations for toroidal Lie algebras, J. Math. Phys. 39 :7 (1998), 3844–3864

    Article  MATH  MathSciNet  Google Scholar 

  5. Billig, Y., Abelian extensions of the group of diffeomorphisms of a torus, Lett. Math. Phys. 64 (2003), 155–169

    Article  MATH  MathSciNet  Google Scholar 

  6. Billig, Y., and K.-H. Neeb, On the cohomology of vector fields on parallelizable manifolds, Ann. Inst. Fourier 58 (2008), 1937–1982

    MATH  MathSciNet  Google Scholar 

  7. Brylinski, J.-L., “Loop Spaces, Characteristic Classes and Geometric Quantization,” Progr. in Math. 107, Birkh¨auser Verlag, 1993

    MathSciNet  Google Scholar 

  8. Cartan, ´E., La topologie des groupes de Lie. (Exp. de g´eom. No. 8.), Actual. Sci. Industr. 358 (1936), 28 p

    Google Scholar 

  9. Chevalley, C., and S. Eilenberg, Cohomology theory of Lie groups and Lie algebras, Transactions of the Amer. Math. Soc. 63 (1948), 85–124

    MATH  MathSciNet  Google Scholar 

  10. Eearle, C. J., and J. Eells, A fiber bundle description of Teichm¨uller theory, J. Diff. Geom. 3 (1969), 19–43

    Google Scholar 

  11. Eswara Rao, S., and R. V. Moody, Vertex representations for n-toroidal Lie algebras and a generalization of the Virasoro algbra, Commun. Math. Phys. 159 (1994), 239–264

    Article  MATH  MathSciNet  Google Scholar 

  12. Eswara Rao, S., and C. Jiang, Classification of irreducible integrable representations for the full toroidal Lie algebras, J. Pure Appl. Algebra 200 :1-2 (2005), 71–85

    Article  MATH  MathSciNet  Google Scholar 

  13. Etingof, P. I., and I. B. Frenkel, Central extensions of current groups in two dimensions, Commun. Math. Phys. 165 (1994), 429–444

    Article  MATH  MathSciNet  Google Scholar 

  14. Faddeev, L. D., Operator anomaly for the Gauss Law, Physics Letters 145B :1,2 (1984), 81–84

    MathSciNet  Google Scholar 

  15. Feigin, B. L. and D. B. Fuchs, Cohomologies of Lie Groups and Lie Algebras, in “Lie Groups and Lie Algebras II”, A. L. Onishchik and E. B. Vinberg (Eds.), Encyclop. Math. Sci. 21, Springer-Verlag, 2001

    Google Scholar 

  16. Frenkel, I. B., and B. Khesin, Four dimensional realization of two dimensional current groups, Commun. Math. Phys. 178 (1996), 541–562

    Article  MATH  MathSciNet  Google Scholar 

  17. Fu, J., and C. Jiang, Integrable representations for the twisted full toroidal Lie algebras, J. Algebra 307 :2 (2007), 769–794

    Article  MATH  MathSciNet  Google Scholar 

  18. Frappat, L., Raggoucy, E., Sorba, P., and F. Thuillier, Generalized Kac–Moody algebras and the diffeomorphism group of a closed surface, Nuclear Physics B334 (1990), 250–264

    Google Scholar 

  19. Fuks, D. B. “Cohomology of Infinite-Dimensional Lie Algebras,” Consultants Bureau, New York, London, 1986

    Google Scholar 

  20. Gotay, M. J., J. Isenberg, J. E. Marsden, and R. Montgomery, Moment Maps and Classical Fields. Part I: Covariant Field Theory, arXiv:physics/9801019v2, August 2004

    Google Scholar 

  21. Glöckner, H., Patched locally convex spaces, almost local mappings, and diffeomorphism groups of non-compact manifolds, Manuscript,TU Darmstadt, 26.6.02

    Google Scholar 

  22. Glöckner, H., and K.-H. Neeb, “Infinite-dimensional Lie groups, Vol. I, Basic Theory and Main Examples,” book in preparation

    Google Scholar 

  23. Godement, R., “Th´eorie des faisceaux”, Hermann, Paris, 1973

    Google Scholar 

  24. Greub, W., S. Halperin, and R. Vanstone, “Connections, Curvature, and Cohomology. Vol. I: De Rham Cohomology of Manifolds and Vector Bundles”, Pure and Applied Mathematics 47, Academic Press, New York-London, 1972

    Google Scholar 

  25. Greub, W., and H.-R. Petry, On the lifting of structure groups, in “Differential geometric methods in math. physics, II”, Lecture Notes Math. 676 (1978), 217–246

    Article  MathSciNet  Google Scholar 

  26. Haefliger, A., Sur la cohomologie de l’alg`ebre de Lie des champs de vecteurs, Ann. Sci. Ec. Norm. Sup. 4e s´erie 9 (1976), 503–532

    MATH  MathSciNet  Google Scholar 

  27. Hamilton, R., The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7 (1982), 65–222

    Article  MATH  MathSciNet  Google Scholar 

  28. Hochschild, G., “The Structure of Lie Groups,” Holden Day, San Francisco, CA, 1965.

    MATH  Google Scholar 

  29. Husemoller, D., “Fibre Bundles”, Graduate Texts in Math. 20, Springer-Verlag, New York, Berlin, 1994

    Google Scholar 

  30. Kac, V. G., “Infinite-dimensional Lie Algebras,” Cambridge University Press, 3rd printing, Cambridge, UK, 1990

    Book  Google Scholar 

  31. Kobayashi, O., A. Yoshioka, Y. Maeda, and H. Omori, The theory of infinite-dimensional Lie groups and its applications, Acta Appl. Math. 3 :1 (1985), 71–106

    Article  MATH  MathSciNet  Google Scholar 

  32. Kostant, B., Quantization and unitary representations, Lectures in modern analysis and applications III, Lecture Notes Math. 170 (1970), 87–208

    Article  MathSciNet  Google Scholar 

  33. Koszul, J.-L., Homologie des complexes de formes diff´erentielles d’ordre sup´erieur, in “Collection of articles dedicated to Henri Cartan on the occasion of his 70th birthday, I”, Ann. Sci. ´Ecole Norm. Sup. (4) 7 (1974), 139–153

    MATH  MathSciNet  Google Scholar 

  34. Kriegl, A., and P. Michor, “The Convenient Setting of Global Analysis,” Math. Surveys and Monographs 53, Amer. Math. Soc., 1997

    Google Scholar 

  35. Larsson, T. A., Lowest-energy representations of non-centrally extended diffeomorphism algebras, Commun. Math. Phys. 201 (1999), 461–470

    Article  MATH  MathSciNet  Google Scholar 

  36. Larsson, T. A., Extended diffeomorphism algebras and trajectories in jet space, Commun. Math. Phys. 214 :2 (2000), 469–491

    Article  MATH  MathSciNet  Google Scholar 

  37. Laurent-Gengoux, C., and F. Wagemann, Obstruction classes of crossed modules of Lie algebroids linked to existence of principal bundles, Ann. Global Anal. Geom. 34 :1 (2008), 21–37

    Article  MATH  MathSciNet  Google Scholar 

  38. Lecomte, P., Sur l’alg`ebre de Lie des sections d’un fibr´e en alg`ebre de Lie, Ann. Inst. Fourier 30 (1980), 35–50

    MATH  MathSciNet  Google Scholar 

  39. Lecomte, P., Sur la suite exacte canonique associ´ee `a un fibr´e principal, Bull Soc. Math. Fr. 13 (1985), 259–271

    MathSciNet  Google Scholar 

  40. Leslie, J. A., On a differential structure for the group of diffeomorphisms, Topology 6 (1967), 263–271

    Article  MATH  MathSciNet  Google Scholar 

  41. Losev, A., G. Moore, N. Nekrasov, and S. Shatashvili, Fourdimensional avatars of two-dimensional RCFT, in “Strings 95” (Los Angeles, CA, 1995), World Sci. Publ., NJ, 1996, 336–362

    Google Scholar 

  42. Losev, A., G. Moore, N. Nekrasov, and S. Shatashvili, Central extensions of gauge groups revisited, Sel. Math., New series 4 (1998), 117–123

    Article  MATH  MathSciNet  Google Scholar 

  43. Mackenzie, K., Classification of principal bundles and Lie groupoids with prescribed gauge group bundle, J. Pure Appl. Algebra 58 :2 (1989), 181–208

    Article  MATH  MathSciNet  Google Scholar 

  44. Mackenzie, K. C. H., “General Theory of Lie Groupoids and Lie Algebroids,” London Mathematical Society Lecture Note Series 213, Cambridge University Press, Cambridge, UK, 2005

    Google Scholar 

  45. Maier, P., Central extensions of topological current algebras, in “Geometry and Analysis on Finite- and Infinite-Dimensional Lie Groups,” A. Strasburger et al. (eds.), Banach Center Publications 55, Warszawa 2002; 61–76

    Google Scholar 

  46. Maier, P., and K.-H. Neeb, Central extensions of current groups, Math. Annalen 326 :2 (2003), 367–415

    Article  MATH  MathSciNet  Google Scholar 

  47. Michor, P. W., “Manifolds of Differentiable Mappings,” Shiva Publishing, Orpington, Kent (UK), 1980

    Google Scholar 

  48. Milnor, J., Remarks on infinite-dimensional Lie groups, in De Witt, B., Stora, R. (eds.), “Relativit´e, groupes et topologie II” (Les Houches, 1983), North Holland, Amsterdam, 1984; 1007–1057

    Google Scholar 

  49. Morita, S., “Geometry of Characteristic Classes,” Transl. Math. Monographs 199, 1999, American Math. Soc., 2001

    Google Scholar 

  50. Murray, M. K., Bundle gerbes, London Math. Soc. (2) 54 (1996), 403–416

    MATH  Google Scholar 

  51. Müller, Chr., and Chr. Wockel, Equivalences of smooth and continuous principal bundles with infinite-dimensional structure group, Adv. Geom. 9 :4 (2009), 605–626

    Article  MATH  MathSciNet  Google Scholar 

  52. Neeb, K.-H., Central extensions of infinite-dimensional Lie groups, Annales de l’Inst. Fourier 52 :5 (2002), 1365–1442

    MATH  MathSciNet  Google Scholar 

  53. Neeb, K.-H., Abelian extensions of infinite-dimensional Lie groups, Travaux math´ematiques 15 (2004), 69–194

    MathSciNet  Google Scholar 

  54. Neeb, K.-H., Current groups for non-compact manifolds and their central extensions, in “Infinite Dimensional Groups and Manifolds”. T. Wurzbacher (ed.). IRMA Lectures in Mathematics and Theoretical Physics 5, de Gruyter Verlag, Berlin, 2004; 109–183

    Google Scholar 

  55. Neeb, K.-H., Towards a Lie theory of locally convex groups, Jap. J. Math. 3rd series 1 :2 (2006), 291–468.

    Article  MATH  MathSciNet  Google Scholar 

  56. Neeb, K.-H., Nonabelian extensions of topological Lie algebras, Communications in Alg. 34 (2006), 991–1041

    Article  MATH  MathSciNet  Google Scholar 

  57. Neeb, K.-H., Lie algebra extensions and higher order cocycles, J. Geom. Sym. Phys. 5 (2006), 48–74

    MATH  MathSciNet  Google Scholar 

  58. Neeb, K.-H., Nonabelian extensions of infinite-dimensional Lie groups, Ann. Inst. Fourier 56 (2007), 209–271

    MathSciNet  Google Scholar 

  59. Neeb, K.-H. and C. Vizman, Flux homomorphisms and principal bundles over infinite-dimensional manifolds, Monatshefte Math. 139 (2003), 309–333

    Article  MATH  MathSciNet  Google Scholar 

  60. Neeb, K.-H., and F. Wagemann, The second cohomology of current algebras of general Lie algebras, Canadian J. Math. 60 :4 (2008), 892–922

    MATH  MathSciNet  Google Scholar 

  61. Neeb, K.-H., and F. Wagemann, Lie group structures on groups of maps on non-compact manifolds, Geom. Dedicata 134 (2008), 17–60

    Article  MATH  MathSciNet  Google Scholar 

  62. Neeb, K.-H., and Chr. Wockel, Central extensions of groups of section, Annals of Global Analysis and Geometry 36 :4 (2009), 381–418

    Article  MATH  MathSciNet  Google Scholar 

  63. Neher, E., Lectures on root graded and extended affine Lie algebras, Version of May 11, 2007

    Google Scholar 

  64. Omori, H., On the group of diffeomorphisms on a compact manifold, in “Global Analysis” (Proc. Sympos. Pure Math., Vol. XV, Berkeley, CA, 1968), Amer. Math. Soc., Providence, RI, 1970, 167–183

    Google Scholar 

  65. Ovsienko, V., and C. Roger, Looped cotangent Virasoro algebra and non-linear integrable systems in dimension 2+1, Comm. Math. Phys. 273 :2 (2007), 357–378

    Article  MATH  MathSciNet  Google Scholar 

  66. Pianzola, A., D. Prelat, and J. Sun, Descent constructions for central extensions of infinite dimensional Lie algebras, Manuscripta Math. 122 :2 (2007), 137–148

    Article  MATH  MathSciNet  Google Scholar 

  67. Pickrell, D., Extensions of loop groups, in “The Mathematical Legacy of Hanno Rund,” Hadronic Press, Palm Harbor, FL, 1993; pp. 87–134

    Google Scholar 

  68. Pickrell, D., Extensions of Loop Groups, H4(BK, Z), and Reciprocity, Unpublished preprint, 2000

    Google Scholar 

  69. Pressley, A., and G. Segal, “Loop Groups,” Oxford University Press, Oxford, 1986

    Google Scholar 

  70. Schmid, R., Infinite dimensional Lie groups with applications to mathematical physics, J. Geom. Symm. Phys. 1 (2004), 54–120

    MATH  Google Scholar 

  71. Schweigert, Chr., and K. Waldorf, Gerbes and Lie groups, Karl-Hermann Neeb and Arturo Pianzola (eds.), “Developments and Trends in Infinite-Dimensional Lie Theory,” Birkh¨auser, Boston, MA, 2010

    Google Scholar 

  72. Shiga, K., and T. Tsujishita, Differential representations of vector fields, Kodai Math. Sem. Rep. 28 (1977), 214–225

    Article  MATH  MathSciNet  Google Scholar 

  73. Thom, R., Op´erations en cohomologie r´eelle, S´eminaire Henri Cartan, tome 7, no. 2, (1954–1955), exp. no.17, 1–10

    Google Scholar 

  74. Toledano Laredo, V., Positive energy representations of the loop groups of non-simply connected Lie groups, Commun. Math. Phys. 207 (1999), 307–339

    Article  MATH  MathSciNet  Google Scholar 

  75. Tsujishita, T., “Continuous Cohomology of the Lie Algebra of Vector Fields,” Memoirs of the Amer. Math. Soc. 34 :253, 1981

    MathSciNet  Google Scholar 

  76. Vizman, C., The path group construction of Lie group extensions, J. Geom. Phys. 58 :7 (2008), 860–873

    Article  MATH  MathSciNet  Google Scholar 

  77. Whitehead, G. W., “Elements of Homotopy Theory,” Graduate Texts in Mathematics 61, Springer-Verlag, New York, Berlin, 1978

    Google Scholar 

  78. Wockel, Chr., Lie group structures on symmetry groups of principal bundles, J. Funct. Anal. 251:1 (2007), 254–288

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Hermann Neeb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Neeb, KH. (2011). Lie Groups of Bundle Automorphisms and Their Extensions. In: Neeb, KH., Pianzola, A. (eds) Developments and Trends in Infinite-Dimensional Lie Theory. Progress in Mathematics, vol 288. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4741-4_9

Download citation

Publish with us

Policies and ethics