Skip to main content

Direct Limits of Infinite-Dimensional Lie Groups

  • Chapter
  • First Online:
Developments and Trends in Infinite-Dimensional Lie Theory

Part of the book series: Progress in Mathematics ((PM,volume 288))

Summary

Many infinite-dimensional Lie groups G of interest can be expressed as the union G = ∪n∈ℕ G n of an ascending sequence \(G_{1} \subseteq G_{2} \subseteq \cdots \) of (finite- or infinite-dimensional) Lie groups. In this survey article, we compile general results concerning such ascending unions, describe the main classes of examples and explain what the general theory tells us about them.

2000 Mathematics Subject Classifications: Primary 22E65. Secondary 26E15, 46A13, 46G20, 46T05, 46T20, 46T25, 54B35, 54D50, 55Q10, 58B05, 58D05.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. C. Abbati, R. Cirelli, A. Mania and P.W. Michor, The Lie group of automorphisms of a principal bundle, J. Geom. Phys. 6 :2 (1989), 215–235.

    Article  MATH  MathSciNet  Google Scholar 

  2. S.A. Albeverio, R. J. Høgh-Krohn, J.A. Marion, D.H. Testard and B. S. Torrésani, Noncommutative Distributions, Marcel Dekker, New York, 1993.

    MATH  Google Scholar 

  3. S. A. Albeverio and A. Kosyak, Quasiregular representations of the infinite-dimensional nilpotent group, J. Funct. Anal. 236 :2 (2006), 634–681.

    Article  MATH  MathSciNet  Google Scholar 

  4. Y.A. Bahturin, A.A. Baranov and A.E. Zalesski, Simple Lie subalgebras of locally finite associative algebras, J. Algebra 281 :1 (2004), 225–246.

    Article  MATH  MathSciNet  Google Scholar 

  5. Y. Bahturin and G. Benkart, Some constructions in the theory of locally finite simple Lie algebras, J. Lie Theory 14 :1 (2004), 243–270.

    MATH  MathSciNet  Google Scholar 

  6. A. Banyaga, The Structure of Classical Diffeomorphism Groups, Kluwer, Dordrecht, 1997.

    MATH  Google Scholar 

  7. K.-D. Bierstedt, An introduction to locally convex inductive limits, pp. 35–133 in: H. Hogbe-Nlend (ed.), Functional Analysis and its Applications, World Scientific, Singapore, 1988.

    Google Scholar 

  8. K.-D. Bierstedt, R. Meise and W.H. Summers, A projective description of weighted inductive limits, Trans. Amer. Math. Soc. 272 :1 (1982), 107–160.

    MATH  MathSciNet  Google Scholar 

  9. J. Bochnak and J. Siciak, Analytic functions in topological vector spaces. Studia Math. 39 (1971), 77–112.

    MATH  MathSciNet  Google Scholar 

  10. H. Boseck, G. Czichowski and K.-P. Rudolph, Analysis on Topological Groups - General Lie Theory, Teubner, Leipzig, 1981.

    MATH  Google Scholar 

  11. N. Bourbaki, Topological Vector Spaces, Chapters 1–5, Springer, Berlin, 1987.

    MATH  Google Scholar 

  12. S.B. Chae, Holomorphy and Calculus in Normed Spaces, Marcel Dekker, New York, 1985.

    MATH  Google Scholar 

  13. R. Dahmen, Complex analytic mappings on (LB)-spaces and applications in infinite-dimensional Lie theory, Math. Z. 266 :1 (2010), 115–140.

    Article  MATH  Google Scholar 

  14. R. Dahmen and H. Glöckner, Regularity in Milnor’s sense for direct limits of infinite-dimensional Lie groups, in preparation.

    Google Scholar 

  15. [DW97] S. Dierolf and J. Wengenroth, Inductive limits of topological algebras, Linear Topol. Spaces Complex Anal. 3 (1997), 45–49.

    MathSciNet  Google Scholar 

  16. I. Dimitrov and I. Penkov, Borel subalgebras of gl(), Resenhas 6:2–3 (2004), 153–163.

    MATH  MathSciNet  Google Scholar 

  17. I. Dimitrov, I. Penkov and J.A. Wolf, A Bott-Borel-Weil theory for direct limits of algebraic groups, Amer. J. Math. 124 :5 (2002), 955–998.

    Article  MATH  MathSciNet  Google Scholar 

  18. R.M. Dudley, On sequential convergence, Trans. Amer. Math. Soc. 112 (1964), 483–507.

    MATH  MathSciNet  Google Scholar 

  19. A. Dvorsky, Direct limits of low-rank representations of classical groups, Comm. Algebra 30 :12 (2002), 6011–6022.

    Article  MATH  MathSciNet  Google Scholar 

  20. T. Edamatsu, On the bamboo-shoot topology of certain inductive limits of topological groups, J. Math. Kyoto Univ. 39 :4 (1999), 715–724.

    MATH  MathSciNet  Google Scholar 

  21. K. Floret, Lokalkonvexe Sequenzen mit kompakten Abbildungen, J. Reine Angew. Math. 247 (1971), 155–195.

    MATH  MathSciNet  Google Scholar 

  22. K. Floret, On bounded sets in inductive limits of normed spaces, Proc. Amer. Math. Soc. 75 :2 (1979), 221–225.

    MATH  MathSciNet  Google Scholar 

  23. K. Floret, Some aspects of the theory of locally convex inductive limits, pp. 205–237 in: K.-D. Bierstedt and B. Fuchssteiner (eds.), Functional Analysis: Surveys and Recent Results II, North-Holland Math. Stud. 38, North-Holland, Amsterdam, 1980.

    Google Scholar 

  24. H. Glöckner, Infinite-dimensional Lie groups without completeness restrictions, pp. 43–59 in: A. Strasburger et al. (eds.), Geometry and Analysis on Finite- and Infinite-Dimensional Lie Groups, Banach Center Publ. 55, Warsaw, 2002.

    Google Scholar 

  25. H. Glöckner, Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups, J. Funct. Anal. 194 :2 (2002), 347–409.

    Article  MATH  MathSciNet  Google Scholar 

  26. H. Glöckner, Algebras whose groups of units are Lie groups, Studia Math. 153 :2 (2002), 147–177.

    Article  MATH  MathSciNet  Google Scholar 

  27. H. Glöckner, Patched locally convex spaces, almost local mappings and diffeomorphism groups of non-compact manifolds, manuscript, 2002.

    Google Scholar 

  28. H. Glöckner, Direct limit Lie groups and manifolds, J. Math. Kyoto Univ. 43 :1 (2003), 1–26.

    MATH  Google Scholar 

  29. H. Glöckner, Lie groups of measurable mappings, Canad. J. Math. 55 :5 (2003), 969–999.

    MATH  MathSciNet  Google Scholar 

  30. H. Glöckner, Lie groups of germs of analytic mappings, pp. 1–16 in: T. Wurzbacher (ed.), Infinite-Dimensional Groups and Manifolds, IRMA Lecture Notes in Math. and Theor. Physics, de Gruyter, 2004.

    Google Scholar 

  31. H. Glöckner, Lie groups over non-discrete topological fields, preprint, arXiv:math/0408008.

    Google Scholar 

  32. H. Glöckner, Diff(Rn) as a Milnor-Lie group, Math.Nachr. 278 :9 (2005), 1025–1032.

    Article  MATH  MathSciNet  Google Scholar 

  33. H. Glöckner, Fundamentals of direct limit Lie theory, Compos. Math. 141 :6 (2005), 1551–1577.

    Article  MATH  MathSciNet  Google Scholar 

  34. H. Glöckner, Direct limit groups do not have small subgroups, Topol. Appl. 154 :6 (2007), 1126–1133.

    Article  MATH  Google Scholar 

  35. H. Glöckner, Direct limits of infinite-dimensional Lie groups compared to direct limits in related categories, J. Funct. Anal. 245 :1 (2007), 19–61.

    Article  MATH  MathSciNet  Google Scholar 

  36. H. Glöckner, Solutions to questions in Neeb’s recent survey on infinitedimensional Lie groups, Geom. Dedicata 135 (2008), 71–86.

    Article  MATH  MathSciNet  Google Scholar 

  37. H. Glöckner, Homotopy groups of ascending unions of infinitedimensional manifolds, to appear in Ann. Inst. Fourier (cf. arXiv:0812.4713v1)

    Google Scholar 

  38. H. Glöckner, R. Gramlich and T. Hartnick, Final group topologies, Kac-Moody groups and Pontryagin duality, Israel J.Math. 177 (2010), 49–102.

    Article  Google Scholar 

  39. H. Glöckner and K.-H. Neeb, Infinite-Dimensional Lie Groups, Vol 1, book in preparation.

    Google Scholar 

  40. G.A. Goldin, Lectures on diffeomorphism groups in quantum physics, pp. 3–93 in: Contemporary Problems in Mathematical Physics, Proceedings of the 3rd Intern. Workshop (Cotonou, 2003), World Scientific, 2004

    Google Scholar 

  41. V. L. Hansen, Some theorems on direct limits of expanding systems of manifolds, Math. Scand. 29 (1971), 5–36.

    MATH  MathSciNet  Google Scholar 

  42. T. Hirai, Irreducible unitary representations of the group of diffeomorphisms of a noncompact manifold, J. Math. Kyoto Univ. 33 :3 (1993), 827–864.

    MATH  MathSciNet  Google Scholar 

  43. T. Hirai, H. Shimomura, N. Tatsuuma and E. Hirai, Inductive limits of topologies, their direct products, and problems related to algebraic structures, J. Math. Kyoto Univ. 41 :3 (2001), 475–505.

    MATH  MathSciNet  Google Scholar 

  44. K.H. Hofmann and S.A. Morris, The Lie Theory of Connected Pro-Lie Groups, EMS Tracts in Mathematics 2, European Mathematical Society, Zurich, 2007.

    Google Scholar 

  45. R. S. Ismagilov, Unitary representations of the group C ∞ 0 (X,G), G = SU2, Mat. Sb. (N.S.) 100(142) :1 (1976), 117–131, 166.

    MathSciNet  Google Scholar 

  46. N. Kamran and T. Robart, A manifold structure for analytic isotropy Lie pseudogroups of infinite type, J. Lie Theory 11 :1 (2001), 57–80.

    MATH  MathSciNet  Google Scholar 

  47. H.H. Keller, Differential Calculus in Locally Convex Spaces, Springer, Berlin, 1974.

    MATH  Google Scholar 

  48. S. Kerov, G. I. Ol’shanskiĭ and A. Vershik, Harmonic analysis on the infinite symmetric group, Invent. Math. 158 :3 (2004), 551–642.

    Article  MATH  MathSciNet  Google Scholar 

  49. A.A. Kirillov, Unitary representations of the group of diffeomorphisms and of some of its subgroups, Sel. Math. Sov. 1 (1981), 351–372.

    MATH  MathSciNet  Google Scholar 

  50. J. Köhn, Induktive Limiten nicht lokal-konvexer topologischer Vektorr¨aume, Math. Ann. 181 (1969), 269–278.

    Article  MATH  MathSciNet  Google Scholar 

  51. V. I. Kolomycev and Y. S. Samoĭlenko, Irreducible representations of inductive limits of groups, Ukr. Mat. J. 29 (1977), 526–531, 565

    Google Scholar 

  52. A. Kriegl and P.W. Michor, The Convenient Setting of Global Analysis, Amer. Math. Soc., Providence, RI, 1997.

    Google Scholar 

  53. K. Kühn, Direct limits of diagonal chains of type O, U, and Sp, and their homotopy groups, Comm. Algebra 34 :1 (2006), 75–87.

    Article  MATH  MathSciNet  Google Scholar 

  54. F. Leitenberger, Unitary representations and coadjoint orbits for a group of germs of real analytic diffeomorphisms, Math. Nachr. 169 (1994), 185–205.

    Article  MATH  MathSciNet  Google Scholar 

  55. A.K. Leonov and S.A. Shkarin, Integral completeness of locally convex spaces, Russ. J. Math. Phys. 7 :4 (2000), 402–412.

    MATH  MathSciNet  Google Scholar 

  56. J. Leslie, On the group of real analytic diffeomorphisms of a compact real analytic manifold, Trans. Amer. Math. Soc. 274 :2 (1982), 651–669.

    MathSciNet  Google Scholar 

  57. J. Leslie, Some finite-codimensional Lie subgroups of Diffω(M), pp. 359–372 in: G.M. Rassias and T.M. Rassias (eds.), Differential Geometry, Calculus of Variations, and their Applications, Lecture Notes in Pure and Appl. Math. 100, Marcel Dekker, New York, 1985.

    Google Scholar 

  58. B. M. Makarov, Some pathological properties of inductive limits of B-spaces, Uspehi Mat. Nauk 18 :3 (1963), 171–178.

    MATH  MathSciNet  Google Scholar 

  59. P. W. Michor, Manifolds of Differentiable Mappings, Shiva Publishing, Nantwich, 1980.

    MATH  Google Scholar 

  60. J. Milnor, On infinite dimensional Lie groups, Preprint, Institute of Advanced Study, Princeton, 1982.

    Google Scholar 

  61. J. Milnor, Remarks on infinite dimensional Lie groups, pp. 1007–1057 in: B. DeWitt and R. Stora (eds.), Relativity, Groups and Topology II, North-Holland, Amsterdam, 1984.

    Google Scholar 

  62. A.A. Miljutin, Isomorphism of the spaces of continuous functions over compact sets of the cardinality of the continuum, Teor. Funkciĭ Funkcional. Anal. i Priloˇzen. Vyp. 2 (1966), 150–156.

    MATH  MathSciNet  Google Scholar 

  63. J. Mujica, Spaces of germs of holomorphic functions, pp. 1–41 in: G.-C. Rota (ed.), Studies in Analysis, Adv. in Math. Suppl. Stud. 4, Academic Press, New York, 1979.

    Google Scholar 

  64. J. Mujica, Spaces of continuous functions with values in an inductive limit, pp. 359–367 in: G. I. Zapata (ed.), Functional Analysis, Holomorphy, and Approximation Theory, Lect. Notes Pure Appl. Math. 83, Marcel Dekker, New York, 1983.

    Google Scholar 

  65. L. Natarajan, E. Rodríguez-Carrington and J. A. Wolf, Differentiable structure for direct limit groups, Letters in Math. Phys. 23 :2, (1991) 99–109.

    Article  MATH  Google Scholar 

  66. L. Natarajan, E. Rodríguez-Carrington and J. A. Wolf, Locally convex Lie groups, Nova J. Alg. Geom. 2 :1 (1993), 59–87.

    MATH  Google Scholar 

  67. L. Natarajan, E. Rodríguez-Carrington and J. A. Wolf, The Bott-Borel-Weil theorem for direct limit groups, Trans. Amer. Math. Soc. 353 :11 (2001), 4583–4622.

    Article  MATH  MathSciNet  Google Scholar 

  68. K.-H. Neeb, Holomorphic highest weight representations of infinitedimensional complex classical groups, J. Reine Angew.Math. 497 (1998), 171–222.

    MATH  MathSciNet  Google Scholar 

  69. K.-H. Neeb, Integrable roots in split graded Lie algebras, J. Algebra 225 :2 (2000), 534–580.

    Article  MATH  MathSciNet  Google Scholar 

  70. K.-H. Neeb, Classical Hilbert-Lie groups, their extensions and their homotopy groups, pp. 87–151 in: A. Strasburger et al. (eds.) Geometry and Analysis on Finite- and Infinite-Dimensional Lie Groups, Banach Center Publ. 55, Warsaw, 2002.

    Google Scholar 

  71. K.-H. Neeb, Central extensions of infinite-dimensional Lie groups, Ann. Inst. Fourier (Grenoble) 52 :5 (2002), 1365–1442.

    MATH  MathSciNet  Google Scholar 

  72. K.-H. Neeb, Current groups for non-compact manifolds and their central extensions, pp. 109–183 in: T. Wurzbacher (ed.) Infinite-Dimensional Groups andManifolds, IRMA Lecture Notes in Math. and Theor. Physics, de Gruyter, 2004.

    Google Scholar 

  73. K.-H. Neeb, Abelian extensions of infinite-dimensional Lie groups, Travaux Math. 15 (2004), 69–194.

    MathSciNet  Google Scholar 

  74. K.-H. Neeb, Infinite-dimensional groups and their representations, pp. 213–328 in: J.C. Jantzen and K.-H. Neeb (eds.), Lie Theory, Birkhäuser, Boston, MA, 2004.

    Google Scholar 

  75. K.-H. Neeb, Towards a Lie theory of locally convex groups, Jpn. J. Math. 1 :2 (2006), 291–468.

    Article  MATH  MathSciNet  Google Scholar 

  76. K.-H. Neeb, Non-abelian extensions of infinite-dimensional Lie groups, Ann. Inst. Fourier (Grenoble) 57 :1 (2007), 209–271.

    MATH  MathSciNet  Google Scholar 

  77. K.-H. Neeb and N. Stumme, The classification of locally finite split simple Lie algebras, J. Reine Angew. Math. 533 (2001), 25–53.

    MATH  MathSciNet  Google Scholar 

  78. K.-H. Neeb and F. Wagemann, Lie group structures on groups of smooth and holomorphic maps on non-compact manifolds, Geom. Dedicata 134 (2008), 17–60.

    Article  MATH  MathSciNet  Google Scholar 

  79. G. I. Ol’shanskiĭ, Unitary representations of infinite-dimensional pairs (G,K) and the formalism of R. Howe, Dokl. Akad. Nauk SSSR 269 :1 (1983), 33–36.

    MathSciNet  Google Scholar 

  80. G. I. Ol’shanskiĭ, The problem of harmonic analysis on the infinitedimensional unitary group, J. Funct. Anal. 205 :2 (2003), 464–524.

    Article  MathSciNet  Google Scholar 

  81. H. Omori, Infinite-Dimensional Lie Groups, Transl. Math. Monographs 158, Amer. Math. Soc., Providence, RI, 1997.

    MathSciNet  Google Scholar 

  82. R. S. Palais, On the homotopy type of certain groups of operators, Topology 3 (1965), 271–279.

    Article  MATH  MathSciNet  Google Scholar 

  83. R. S. Palais, Homotopy theory of infinite-dimensional manifolds, Topology 5 (1966), 1–16.

    Article  MATH  MathSciNet  Google Scholar 

  84. I. Penkov and H. Strade, Locally finite Lie algebras with root decomposition, Arch. Math. (Basel) 80 :5 (2003), 478–485.

    MATH  MathSciNet  Google Scholar 

  85. D. Pickrell Heat kernel measures and critical limits, Karl-Hermann Neeb and Arturo Pianzola (eds.), Developments and Trends in Infinite-Dimensional Lie Theory, Birkhäuser, Boston, MA, 2010.

    Google Scholar 

  86. D. Pisanelli, An example of an infinite Lie group, Proc. Amer. Math. Soc. 62 :1 (1977), 156–160.

    MATH  MathSciNet  Google Scholar 

  87. M. Rabaoui, A Bochner type theorem for inductive limits of Gelfand pairs, Ann. Inst. Fourier 58 :5 (2008), 1551–1573.

    MATH  MathSciNet  Google Scholar 

  88. J. Schmets, Spaces of vector-valued continuous functions, pp. 368–377 in: R.M. Aron and S. Dineen (eds.), Vector Space Measures and Applications II, Lecture Notes in Math. 644, Springer, Berlin, 1978.

    Chapter  Google Scholar 

  89. J. Schmets, Spaces of Vector-Valued Continuous Functions, Lecture Notes in Math. 1003, Springer, Berlin, 1983.

    Google Scholar 

  90. J. Sebastião e Silva, Su certe classi di spazi localmente convessi importanti per le applicazioni, Rend. Mat. Appl. 14 (1955), 388–410.

    Google Scholar 

  91. H. Shimomura, Quasi-invariant measures on the group of diffeomorphisms and smooth vectors of unitary representations, J. Funct. Anal. 187:2 (2001), 406–441.

    Article  MATH  MathSciNet  Google Scholar 

  92. H. Shimomura, Irreducible decompositions of unitary representations of infinite-dimensional groups, Math. Z. 251 :3 (2005), 575–587.

    Article  MATH  MathSciNet  Google Scholar 

  93. T. Shirai, Sur les topologies des espaces de L. Schwartz, Proc. Japan Acad. 35 (1959), 31–36.

    Article  MATH  MathSciNet  Google Scholar 

  94. O. G. Smolyanov, Almost closed linear subspaces of strict inductive limits of sequences of Fr´echet spaces, Mat. Sb. (N.S.) 80 (122) (1969), 513–520.

    MathSciNet  Google Scholar 

  95. N. Stumme, The structure of locally finite split Lie algebras, J. Algebra 220 :2 (1999), 664–693.

    Article  MATH  MathSciNet  Google Scholar 

  96. N. Tatsuuma, H. Shimomura and T. Hirai, On group topologies and unitary representations of inductive limits of topological groups and the case of the group of diffeomorphisms, J. Math. Kyoto Univ. 38 :3 (1998), 551–578.

    MATH  MathSciNet  Google Scholar 

  97. E. Thoma, Über unit¨are Darstellungen abz¨ahlbarer, diskreter Gruppen, Math. Ann. 153 (1964), 111–138.

    Article  MATH  MathSciNet  Google Scholar 

  98. E. Thoma, Die unzerlegbaren, positiv-definiten Klassenfunktionen der abz¨ahlbar unendlichen, symmetrischen Gruppe, Math. Z. 85 (1964), 40–61.

    Article  MATH  MathSciNet  Google Scholar 

  99. A. M. Veršik, I. M. Gel’fand and M. I. Graev, Representations of the group of diffeomorphisms, Uspehi Mat. Nauk 30 :6 (1975), 1–50.

    MathSciNet  Google Scholar 

  100. D. Voiculescu, Repr´esentations factorielles de type II1 de U(), J. Math. Pures Appl. 55 :1 (1976), 1–20.

    MATH  MathSciNet  Google Scholar 

  101. B. Walter, Weighted diffeomorphism groups of Banach spaces and weighted mapping groups, preprint, arXiv:1006.5580v1.

    Google Scholar 

  102. J. Wengenroth, Derived Functors in Functional Analysis, Lecture Notes in Math. 1810, Springer, Berlin, 2003.

    Google Scholar 

  103. C. Wockel, Lie group structures on symmetry groups of principal bundles, J. Funct. Anal. 251 :1 (2007), 254–288.

    Article  MATH  MathSciNet  Google Scholar 

  104. J.A. Wolf, Principal series representations of direct limit groups, Compos. Math. 141 :6 (2005), 1504–1530.

    Article  MATH  MathSciNet  Google Scholar 

  105. J.A. Wolf, Infinite dimensional multiplicity free spaces I: limits of compact commutative spaces, Karl-Hermann Neeb and Arturo Pianzola (eds.), Developments and Trends in Infinite-Dimensional Lie Theory, Birkhäuser, Boston, MA, 2010.

    Google Scholar 

  106. A. Yamasaki, Inductive limits of general linear groups, J. Math. Kyoto Univ. 38 :4 (1998), 769–779.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helge Glöckner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Glöckner, H. (2011). Direct Limits of Infinite-Dimensional Lie Groups. In: Neeb, KH., Pianzola, A. (eds) Developments and Trends in Infinite-Dimensional Lie Theory. Progress in Mathematics, vol 288. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4741-4_8

Download citation

Publish with us

Policies and ethics