Skip to main content

Tensor Representations of Classical Locally Finite Lie Algebras

  • Chapter
  • First Online:
Book cover Developments and Trends in Infinite-Dimensional Lie Theory

Part of the book series: Progress in Mathematics ((PM,volume 288))

Summary

The structure of tensor representations of the classical finite-dimensional Lie algebras was described by H. Weyl.In this paper we extend Weyl’s results to the classical infinite-dimensional locally finite Lie algebras \({\mathfrak{g}{{\mathfrak{l}}}_{\infty}},\,\,{\mathfrak{s}{{\mathfrak{{l}}}_{\infty}}},\,\,{\mathfrak{s}{{\mathfrak{{p}}}_{\infty}}}\,\,\,{\rm and}\,\,\, {\mathfrak{s}{{\mathfrak{{o}}}_{\infty}}},\) and study important new features specific to the infinite-dimensional setting. Let \(\mathfrak{g}\) be one of the above locally finite Lie algebras and let v be the natural representation of \(\mathfrak{g}.\) The tensor representations of \(\mathfrak{g}.\) have the form V ⊗pV ⊗q * for the cases \({\mathfrak{g}}=\,\,{\mathfrak{g}}{{\mathfrak{{l}}}}_{\infty},\,\,{\mathfrak{s}{{\mathfrak{{l}}}_{\infty}}},\) where V * is the restricted dual of V. In contrast with the finite-dimensional case, these tensor representations are not semisimple. We explicitly describe their Jordan’Höllder constituents, socle filtrations, and indecomposable direct summands.

2000 Mathematics Subject Classifications: Primary 17B65, 17B10.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Baranov, Finitary simple Lie algebras J. Algebra 219 (1999), no. 1, 299–329.

    Article  MATH  MathSciNet  Google Scholar 

  2. Y. Bakhturin, G. Benkart, Weight modules of direct limit Lie algebras, Comm. Algebra 27 (1998), 2249–2766.

    Google Scholar 

  3. Y. Bakhturin, H. Strade, Some examples of locally finite simple Lie algebras Arch. Math. (Basel) 65 (1995), no. 1, 23–26.

    MATH  MathSciNet  Google Scholar 

  4. I. Dimitrov, I. Penkov, Weight modules of direct limit Lie algebras. Internat. Math. Res. Notices 1999, no. 5, 223–249.

    Google Scholar 

  5. I. Dimitrov, I. Penkov, Borel subalgebras of gl() Resenhas 6 (2004), no. 2-3, 153–163.

    MATH  MathSciNet  Google Scholar 

  6. I. Dimitrov, I. Penkov, J. Wolf, A Bott-Borel-Weil theory for direct limits of algebraic groups Amer. J. Math. 124 (2002), no. 5, 955–998.

    Article  MATH  MathSciNet  Google Scholar 

  7. E. Dan-Cohen, I. Penkov, N. Snyder, Cartan subalgebras of root-reductive Lie algebras J. Algebra 308 (2007), no. 2, 583–611.

    Article  MATH  MathSciNet  Google Scholar 

  8. W. Fulton, J. Harris, Representation Theory. A First Course, Graduate Texts in Mathematics, 129. Readings in Mathematics. Springer-Verlag, New York, 1991.

    Google Scholar 

  9. R. Howe, E. Tan, J. Willenbring, Stable branching rules for classical symmetric pairs Trans. Amer. Math. Soc. 357 (2005), no. 4, 1601–1626.

    Article  MATH  MathSciNet  Google Scholar 

  10. G. Mackey, On infinite-dimensional linear spaces. Trans. Amer. Math. Soc. 57 (1945), 155–207.

    MATH  MathSciNet  Google Scholar 

  11. K.-H. Neeb, Holomorphic highest weight representations of infinitedimensional complex classical groups, J. Reine Angew. Math, 497 (1998), 171–222.

    MATH  MathSciNet  Google Scholar 

  12. K.-H. Neeb, I. Penkov, Cartan subalgebras of gl Canad. Math. Bull. 46 (2003), no. 4, 597–616.

    MATH  MathSciNet  Google Scholar 

  13. K.-H. Neeb, N. Stumme, The classification of locally finite split simple Lie algebras. J. Reine Angew. Math. 533 (2001), 25–53.

    MATH  MathSciNet  Google Scholar 

  14. L. Natarajan, Unitary highest weight-modules of inductive limit Lie algebras and groups J. Algebra 167 (1994), no. 1, 9–28.

    Article  MATH  MathSciNet  Google Scholar 

  15. G. Olshanskii, Unitary representations of the group SO0(∞,∞) as limits of unitary representations of the groups SO0(n,∞) as n → ∞. Funct. Anal. Appl. 20 (1998), 292–301.

    Article  Google Scholar 

  16. G. Olshanskii, Representations of infinite-dimensional classical groups, limits of enveloping algebras, and Yangians. In: Topics in Representation Theory (A. A. Kirillov, ed.). Advances in Soviet Math., vol. 2. Amer. Math, Soc., Providence, R.I., 1991, 1–66.

    Google Scholar 

  17. I. Penkov, H. Strade, Locally finite Lie algebras with root decomposition, Archiv Math 80 (2003), 478–485.

    Article  MATH  MathSciNet  Google Scholar 

  18. I. Penkov, G. Zuckerman, A construction of generalized Harish-Chandra modules for locally reductive Lie algebras, Transformation Groups 13 (2008), 799–817.

    Article  MATH  MathSciNet  Google Scholar 

  19. H. Weyl, The Classical Groups: Their Invariants and Representations, Princeton, 1939.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Penkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Penkov, I., Styrkas, K. (2011). Tensor Representations of Classical Locally Finite Lie Algebras. In: Neeb, KH., Pianzola, A. (eds) Developments and Trends in Infinite-Dimensional Lie Theory. Progress in Mathematics, vol 288. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4741-4_4

Download citation

Publish with us

Policies and ethics