The Merkurjev—Suslin Theorem

  • V. Srinivas
Part of the Modern Birkhauser Classics book series (MBC)


Notation: If F is a field, we will use multiplicative notation for the group operation on F*,and on Steinberg symbols. Otherwise, we will use additive notation for the group operation in an Abelian group. If A is an Abelian group, n an integer, and n A : AA is multiplication by n, then we let n A = ker n A and nA = im n A .


Exact Sequence Division Algebra Finite Extension Class Field Theory Quotient Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. MS] A. S. Merkurjev, A. A. Suslin, /C-cohomology of Severi—Brauer varieties and the norm residue homomorphism, Math. USSR Izv. 21 (1983) 307–340 (English translation)Google Scholar
  2. [CS]
    C. Soulé, K2 et le groupe de Brauer (d’après A. S. Merkurjev et A. A. Suslin), Séminaire Bourbaki 601, Astérique 105–106, Soc. Math. France (1983).Google Scholar
  3. [M]
    A. S. Merkurjev, K2 of fields and the Brauer group, Contemporary Math. Vol. 55, Part II, Amer. Math. Soc. (1986).Google Scholar
  4. [Mi]
    J. S. Milne, Étale Cohomology, Princeton Math. Ser. 33, Princeton (1980).Google Scholar
  5. [AS]
    A. A. Suslin, Algebraic K-theory and the norm-residue homomorphism, J. Soviet Math. 30 (1985) 2556–2611.CrossRefMATHGoogle Scholar
  6. [AS2]
    A. A. Suslin. Torsion in K2 of fields, K-Theory 1 (1987) 5–29.MathSciNetCrossRefMATHGoogle Scholar
  7. [S]
    J.-P. Serre, Local Fields, Grad. Texts in Math. No. 67, Springer-Verlag (1979).Google Scholar
  8. [T]
    J. Tate, Relations between K2 and Galois cohomology, Invent. Math. 36 (1976) 257–274.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • V. Srinivas
    • 1
  1. 1.School of MathematicsTata Institute of Fundamental ResearchBombayIndia

Personalised recommendations