Twisting Elements in Homotopy G-Algebras

  • T. KadeishviliEmail author
Part of the Progress in Mathematics book series (PM, volume 287)


We study the notion of twisting elements da = a1 a with respect to ⌣ 1 product when it is a part of homotopy Gerstenhaber algebra structure. This allows us to bring to one context the two classical concepts, the theory of deformation of algebras of M. Gerstenhaber, and A()-algebras of J. Stasheff.

AMS Classification (2010): 16E40, 18G55, 55S30

Key words

A-algebra C-algebra RationalHomotopy 


  1. 1.
    Adams, J.: On the non-existence of elements of Hopf invariant one. Ann. Math. 72, 20–104 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baues, H.: The double bar and cobar construction. Compos. Math. 43, 331–341 (1981)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Berger, C., Fresse, B.: Combinatorial operad action on cochains. Math. Proc. Camb. Phil. Soc. 137, 135–174 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Berikashvili, N.: On the differentials of spectral sequence. Proc. Tbil. Math. Inst. 51, 1–105 (1976)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Brown, E.: Twisted tensor products. Ann. Math. 69, 223–246 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gerstenhaber, M.: The cohomology structure of an associative ring. Ann. Math. 78, 267–288 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gerstenhaber, M.: On the deformations of rings and algebras. Ann. Math. 79(1), 59–103 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gerstenhaber, M., Voronov, A.: Higher operations on Hochschild complex. Funct. Anal. Appl. 29, 1–6 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Getzler, E.: Cartan homotopy formulas and the Gauss–Manin connection in cyclic homology. Israel Math. Conf. Proc. 7, 65–78 (1993)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Getzler E., Jones, J.D.S.: Operads, homotopy algebra, and iterated integrals for double loop spaces. Preprint (1994) hep-th/9403055Google Scholar
  11. 11.
    Gugenghaim V., Stasheff, J.: On perturbations and A(infty)-structures. Bull. Soc. Math. Belg. 38, 237–246 (1986)MathSciNetGoogle Scholar
  12. 12.
    Kadeishvili, T.: On the differentials of spectral sequence of fiber bundle. Bull. Georg. Acad. Sci. 82, 285–288 (1976)zbMATHGoogle Scholar
  13. 13.
    Kadeishvili, T.: On the homology theory of fibrations. Russ. Math. Surv. 35(3), 231–238 (1980)CrossRefzbMATHGoogle Scholar
  14. 14.
    Kadeishvili, T.: The A()-algebra structure and cohomology of Hochschild and Harrison. Proc. Tbil. Math. Inst. 91, 19–27 (1988)zbMATHGoogle Scholar
  15. 15.
    Kadeishvili, T.: A()-algebra structure in cohomology and rational homotopy type. Proc. Tbil. Math. Inst. 107, 1–94 (1993)zbMATHGoogle Scholar
  16. 16.
    Kadeishvili, T.: Measuring the noncommutativity of DG-algebras. J. Math. Sci. 119(4), 494–512 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kadeishvili, T.: On the cobar construction of a bialgebra. Homology, Homotopy and Applications 7(2), 109–122 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kadeishvili, T., Saneblidze, S.: A cubical model for a fibration. J. Pure Appl. Algebra 196(2–3), 203–228 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Khelaia, L.: On some chain operations. Bull. Georg. Acad. Sci. 96(3), 529–531 (1979)MathSciNetGoogle Scholar
  20. 20.
    McLure, J., Smith, J.: A solution of Deligne’s conjecture. Preprint (1999) math.QA/9910126Google Scholar
  21. 21.
    McLure, J., Smith, J.: A solution of Deligne’s Hochschild cohomology conjecture. In: Recent Progress in Homotopy Theory (Baltimore, MD, 2000). Contemporary Mathematics, vol. 293, pp. 153–193. Am. Math. Soc., RI (2002)Google Scholar
  22. 22.
    McLure, J., Smith, J.: Multivariable cochain operations and little n-cubes. J. Am. Math. Soc. 16(3), 681–704 (electronic) (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Smirnov, V.: Homology of fiber spaces, Russ. Math. Surv. 35(3), 183–188 (1980)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Stasheff, J.D.: Homotopy associativity of H-spaces. I, II. Trans. Am. Math. Soc. 108, 275–312 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Voronov, A.: Homotopy Gerstenhaber algebras. In: Dito, G., Sternheimer, D. (eds.) Conference Moshe Flato 1999, vol. 2, pp. 307–331. Kluwer, Dordrecht (2000), math.QA/9908040Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.A. Razmadze Mathematical InstituteTbilisiUSA

Personalised recommendations