Skip to main content

The Lie Algebra Perturbation Lemma

  • Chapter
  • First Online:

Part of the book series: Progress in Mathematics ((PM,volume 287))

Abstract

Let R be a commutative ring which contains the rational numbers as a subring. We shall establish the following.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brown, R.: The twisted Eilenberg–Zilber theorem. Celebrazioni Archimedee del Secolo XX, Simposio di topologia 33–37 (1964)

    Google Scholar 

  2. Cartan, H.: Algèbres d’Eilenberg–Mac Lane et homotopie. Exposés 2–11. Séminaire H. Cartan 1954/55. École Normale Supérieure, Paris (1956)

    Google Scholar 

  3. Dold, A.: Zur Homotopietheorie der Kettenkomplexe. Math. Ann. 140, 278–298 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  4. Eilenberg, S., Mac Lane, S.: On the groups H(π, n). I. Ann. Math. 58, 55–106 (1953) II. Methods of computation. Ann. Math. 60, 49–139 (1954)

    Google Scholar 

  5. Gugenheim, V.K.A.M.: On the chain complex of a fibration. Illinois J. Math. 16, 398–414 (1972)

    MathSciNet  MATH  Google Scholar 

  6. Gugenheim, V.K.A.M.: On a perturbation theory for the homology of the loop space. J. Pure Appl. Algebra 25, 197–205 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gugenheim, V.K.A.M., Lambe, L., Stasheff, J.D.: Perturbation theory in differential homological algebra. II. Illinois J. Math. 35, 357–373 (1991)

    MathSciNet  MATH  Google Scholar 

  8. Huebschmann, J.: The homotopy type of q. The complex and symplectic cases. In: Applications of Algebraic K-Theory to Algebraic Geometry and Number Theory, Part II, Proceedings of a Conference at Boulder, Colorado, 12–18 June 1983. Cont. Math., vol. 55, pp. 487–518 (1986)

    Google Scholar 

  9. Huebschmann, J.: Perturbation theory and free resolutions for nilpotent groups of class 2. J. Algebra 126, 348–399 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Huebschmann, J.: Cohomology of nilpotent groups of class 2. J. Algebra 126, 400–450 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Huebschmann, J.: The mod p cohomology rings of metacyclic groups. J. Pure Appl. Algebra 60, 53–105 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huebschmann, J.: Cohomology of metacyclic groups. Trans. Amer. Math. Soc. 328, 1–72 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huebschmann, J.: Minimal free multi models for chain algebras. Georgian Math. J. 11, 733–752 (2004). Math.AT/0405172

    MathSciNet  MATH  Google Scholar 

  14. Huebschmann, J.: Homological perturbations, equivariant cohomology, and Koszul duality. Documenta math. (accepted for publication). Math.AT/0401160

    Google Scholar 

  15. Huebschmann, J.: Relative homological algebra, homological perturbations, equivariant de Rham theory, and Koszul duality. Math.AT/0401161

    Google Scholar 

  16. Huebschmann, J.: The sh-Lie algebra perturbation lemma. Forum math. (accepted for publication). Arxiv:0710.2070

    Google Scholar 

  17. Huebschmann, J.: Origins and breadth of the theory of higher homotopies. In this volume, pp. 25–38. Arxiv:0710.2645

    Google Scholar 

  18. Huebschmann, J., Kadeishvili, T.: Small models for chain algebras. Math. Z. 207, 245–280 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Huebschmann, J., Stasheff, J.D.: Formal solution of the master equation via HPT and deformation theory. Forum Math. 14, 847–868 (2002). Math.AG/9906036

    Article  MathSciNet  MATH  Google Scholar 

  20. Kontsevich, M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66, 157–216 (2003). Math.QA/9709040

    Article  MathSciNet  MATH  Google Scholar 

  21. Moore, J.C.: Differential Homological Algebra. Actes, Congrès intern. Math. Nice. Gauthiers-Villars, Paris, 335–339 (1970/1971)

    Google Scholar 

  22. Quillen, D.: Rational homotopy theory. Ann. Math. 90, 205–295 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schlessinger, M., Stasheff, J.D.: Deformation theory and rational homotopy type. Pub. Math. Sci. IHES. new version July 13 (1998) (to appear)

    Google Scholar 

  24. Shih, W.: Homologie des espaces fibrés. Pub. Math. Sci. IHES 13 (1962)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Huebschmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Huebschmann, J. (2011). The Lie Algebra Perturbation Lemma. In: Cattaneo, A., Giaquinto, A., Xu, P. (eds) Higher Structures in Geometry and Physics. Progress in Mathematics, vol 287. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-4735-3_8

Download citation

Publish with us

Policies and ethics