Homological Perturbation Theory and Homological Mirror Symmetry

  • Hiroshige KajiuraEmail author
Part of the Progress in Mathematics book series (PM, volume 287)


In this article, we discuss an application of homological perturbation theory (HPT) to homological mirror symmetry (HMS) based on Kontsevich and Soibelman’s proposal [Kontsevich, M., Soibelman, Y. (2001) Homological mirror symmetry and torus fibrations]. After a brief review of Morse theory, Morse homotopy and the corresponding Fukaya categories, we explain the idea of deriving a Fukaya category from a DG category via HPT, which is expected to give a solution to HMS, and apply it to the cases of \({\mathbb{R}}^{2}\) discussed in [Kajiura, H. (2007) An A -structure for lines in a plane] and then T2. A finite dimensional A -algebra obtained from the Fukaya category on T2 is also presented.

Mathematics Subject Classification: 18G55, 53D37

Key words

A-algebras Fukayacategory Homological mirror symmetry 


  1. 1.
    Barannikov, S., Kontsevich, M.: Frobenius manifolds and formality of Lie algebras of polyvector fields. Int. Math. Res. Not.4, 201–205 (1998) math.AG/9710032MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Berline, N., Getzler, E., Vergne, M.: Heat kernels and Dirac operators. Grundlehren Text Editions. Springer, Berlin (2004) Corrected reprint of the 1992 originalGoogle Scholar
  3. 3.
    Bott, R.: Morse theory indomitable. Inst. Hautes Études Sci. Publ. Math. 68, 99–114 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cattaneo, A., Felder, G.: A path integral approach to the Kontsevich quantization formula. Comm. Math. Phys. 212, 591–611 (2000). math.QA/9902090MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cho, C.H.: Products of Floer cohomology of torus fibers in toric Fano manifolds. Comm. Math. Phys.260, 613–640 (2005), math.SG/0412414MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Costello, K.J.: Topological conformal field theories and Calabi-Yau categories. Adv. Math. 210, 165–214 (2007). math.QA/0412149MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fukaya, K.: Morse homotopy,A -category, and Floer homologies. In: Proceedings of GARC Workshop on Geometry and Topology ’93 (Seoul, 1993). Lecture Notes in Series, vol. 18, pp. 1–102. Seoul Nat. Univ., Seoul (1993)Google Scholar
  8. 8.
    Fukaya, K.: Mirror symmetry of abelian varieties and multi theta functions. J. Algebr. Geom.11, 393–512 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fukaya, K.: Asymptotic analysis, multivalued Morse theory, and mirror symmetry. In: Graphs and patterns in mathematics and theoretical physics. Proc. Symp. Pure Math., vol. 73, pp. 205–278. Am. Math. Soc., Providence, RI (2005)Google Scholar
  10. 10.
    Fukaya, K., Oh, Y.G.: Zero-loop open strings in the cotangent bundle and Morse homotopy. Asian J. Math. 1, 96–180 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fukaya, K., Oh, Y.G., Ohta, H., Ono, K. Lagrangian intersection Floer theory – anomaly and obstruction. AMS/IP Stud. Adv. Math., vol. 46. Am. Math. Soc., Providence, RI (2009)Google Scholar
  12. 12.
    Gerstenhaber, M.: The cohomology structure of an associative ring. Ann. Math.78, 267–288 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gerstenhaber, M.: On the deformation of rings and algebras. Ann. Math. 79, 59–103 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Govindarajan, S., Jockers, H., Lerche, W., Warner, N.: Tachyon condensation on the elliptic curve. Nucl. Phys. B765, 240–286 (2007). hep-th/0512208MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gugenheim, V.K.A.M., Stasheff, J.D.: On perturbations and A -structures. Bull. Soc. Math. Belg. 38, 237–246 (1986)Google Scholar
  16. 16.
    Gugenheim, V.K.A.M., Lambe, L.A., Stasheff, J.D.: Algebraic aspects of Chen’s twisting cochain. Illinois J. Math.34, 485–502 (1990)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Gugenheim, V.K.A.M., Lambe, L.A., Stasheff, J.D.: Perturbation theory in differential homological algebra II. Illinois J. Math. 35, 357–373 (1991)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Harvey, F.R., Lawson, Jr., H.B.: Finite volume flows and Morse theory. Ann. Math. (2)153, 1–25 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Hori, K., Vafa, C.: Mirror symmetry. Preprint. hep-th/0002222 (2000)Google Scholar
  20. 20.
    Huebschmann, J., Kadeishvili, T.: Small models for chain algebras. Math. Z. 207, 245–280 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kajiura, H.: Kronecker foliation, D1-branes and Morita equivalence of noncommutative two-tori. JHEP0208, 050 (2002). hep-th/0207097MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kajiura, H.: Homological mirror symmetry on noncommutative two-tori. hep-th/0406233 (2004)Google Scholar
  23. 23.
    Kajiura, H.: Star product formula of theta functions. Lett. Math. Phys. 75, 279–292 (2006). math.QA/0510307MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kajiura, H.: AnA -structure for lines in a plane. Int. Math. Res. Not.20, 3913–3955 (2009). math.QA/0703164MathSciNetzbMATHGoogle Scholar
  25. 25.
    Kajiura, H.: Categories of holomorphic line bundles on higher dimensional noncommutative complex tori. J. Math. Phys. 48, 053517 (2007). hep-th/0510119MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Kajiura, H.: Higher theta functions associated to polygons in a torus, in preparation (2007)Google Scholar
  27. 27.
    Kajiura, H.: Noncommutative homotopy algebras associated with open strings. Rev. Math. Phys.19(1), 1–99 (2007) Based on doctoral thesis, The Univ. of Tokyo. math.QA/0306332MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Kajiura, H.: Noncommutative tori and mirror symmetry. Proceedings for the workshop “New development of Operator Algebras”, RIMS Kokyuroku 1587: 27–72 (2008)Google Scholar
  29. 29.
    Kajiura, H., Stasheff, J.: Homotopy algebras inspired by classical open-closed string field theory. Comm. Math. Phys. 263, 553–581 (2006). math.QA/0410291MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Kajiura, H., Stasheff, J.: Open-closed homotopy algebra in mathematical physics. J. Math. Phys.47, 023506 (2006). hep-th/0510118MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Kapustin, A., Li, Y.: Topological correlators in Landau-Ginzburg models with boundaries. Adv. Theor. Math. Phys. 7, 727–749 (2004). hep-th/0305136MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Kimura, T., Stasheff, J., Voronov, A.A.: On operad structures of moduli spaces and string theory. Comm. Math. Phys.171, 1–25 (1995). hep-th/9307114MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Knapp, J., Omer, H.: Matrix factorizations and homological mirror symmetry on the torus. JHEP 03, 088 (2007). hep-th/0701269MathSciNetCrossRefGoogle Scholar
  34. 34.
    Kontsevich, M.: Homological algebra of mirror symmetry. In: Proceedings of the International Congress of Mathematicians. vols. 1, 2 (Zürich, 1994), vol. 184, pp. 120–139. Birkhäuser, MA (1995). math.AG/9411018Google Scholar
  35. 35.
    Kontsevich, M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys.66(3), 157–216 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Kontsevich, M., Soibelman, Y.: Homological mirror symmetry and torus fibrations. In: Symplectic geometry and mirror symmetry (Seoul, 2000). World Scientific, River Edge, NJ, pp. 203–263 (2001). math.SG/0011041Google Scholar
  37. 37.
    Kreussler, B.: Homological mirror symmetry in dimension one. In: Advances in algebraic geometry motivated by physics (Lowell, MA, 2000). Contem. Math., vol. 276, pp. 179–198. American Mathematical Society, Providence, RI (2001). math.AG/0012018Google Scholar
  38. 38.
    Lada, T., Stasheff, J.D.: Introduction to sh Lie algebras for physicists. Int. J. Theor. Phys. 32, 1087–1103 (1993). hep-th/9209099MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Lazaroiu, C.I.: D-brane categories. Int. J. Mod. Phys. A18, 5299 (2003). hep-th/0305095MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Markl, M., Shnider, S., Stasheff, J.: Operads in Algebra, Topology and Physics. Mathematical Surveys and Monographs, vol. 96. American Mathematical Society, Providence, RI (2002)Google Scholar
  41. 41.
    Polishchuk, A.: A -structures on an elliptic curve. Comm. Math. Phys. 247, 527 (2004). math.AG/0001048Google Scholar
  42. 42.
    Polishchuk, A., Schwarz, A.: Categories of holomorphic vector bundles on noncommutative two-tori. Comm. Math. Phys.236, 135 (2003). math.QA/0211262MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Polishchuk, A., Zaslow, E.: Categorical mirror symmetry: the elliptic curve. Adv. Theor. Math. Phys. 2, 443–470 (1998). math.AG/9801119MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Schlessinger, M., Stasheff, J.: Deformation theory and rational homotopy type. Preprint. University of North Carolina (1979)Google Scholar
  45. 45.
    Schwarz, A.: Theta functions on noncommutative tori. Lett. Math. Phys.58, 81–90 (2001). math.QA/0107186MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Stasheff, J.D.: Homotopy associativity of H-spaces, I. Trans. Am. Math. Soc. 108, 293–312 (1963)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Stasheff, J.D.: Homotopy associativity of H-spaces, II. Trans. Am. Math. Soc.108, 313–327 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Stasheff, J.D.: The intrinsic bracket on the deformation complex of an associative algebra. JPAA 89, 231–235 (1993) Festschrift in Honor of Alex HellerMathSciNetzbMATHGoogle Scholar
  49. 49.
    Strominger, A., Yau, A.T., Zaslow, E.: Mirror symmetry is T-duality. Nucl. Phys. B479, 243–259 (1996). hep-th/9606040MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Witten, E.: Supersymmetry and Morse theory. J. Diff. Geom. 17, 661–692 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Witten, E.: Chern-Simons gauge theory as a string theory. Prog. Math.133, 637–678 (1995). hep-th/9207094MathSciNetzbMATHGoogle Scholar
  52. 52.
    Zwiebach, B.: Closed string field theory: Quantum action and the Batalin-Vilkovisky master equation. Nucl. Phys. B 390, 33–152 (1993). hep-th/9206084MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mathematics and InformaticsChiba UniversityChibaJapan

Personalised recommendations