Skip to main content

Homological Perturbation Theory and Homological Mirror Symmetry

  • Chapter
  • First Online:
Higher Structures in Geometry and Physics

Part of the book series: Progress in Mathematics ((PM,volume 287))

  • 1488 Accesses

Abstract

In this article, we discuss an application of homological perturbation theory (HPT) to homological mirror symmetry (HMS) based on Kontsevich and Soibelman’s proposal [Kontsevich, M., Soibelman, Y. (2001) Homological mirror symmetry and torus fibrations]. After a brief review of Morse theory, Morse homotopy and the corresponding Fukaya categories, we explain the idea of deriving a Fukaya category from a DG category via HPT, which is expected to give a solution to HMS, and apply it to the cases of \({\mathbb{R}}^{2}\) discussed in [Kajiura, H. (2007) An A -structure for lines in a plane] and then T 2. A finite dimensional A -algebra obtained from the Fukaya category on T 2 is also presented.

Mathematics Subject Classification: 18G55, 53D37

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Originally, these degrees in Fukaya categories are defined by the Maslov indices; which consequently coincide with the one defined via the Morse indices [10].

  2. 2.

    A general approach to such a modification h ε is discussed in [36].

  3. 3.

    For the relation of the noncommutative complex torus description and the usual complex torus description, for instance see [42, 23].

  4. 4.

    The number ν a corresponds to α a ∕ q a in the general setting [22]. The effect of flat connections β a there is set to be zero in this article for simplicity.

References

  1. Barannikov, S., Kontsevich, M.: Frobenius manifolds and formality of Lie algebras of polyvector fields. Int. Math. Res. Not.4, 201–205 (1998) math.AG/9710032

    Article  MathSciNet  MATH  Google Scholar 

  2. Berline, N., Getzler, E., Vergne, M.: Heat kernels and Dirac operators. Grundlehren Text Editions. Springer, Berlin (2004) Corrected reprint of the 1992 original

    Google Scholar 

  3. Bott, R.: Morse theory indomitable. Inst. Hautes Études Sci. Publ. Math. 68, 99–114 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cattaneo, A., Felder, G.: A path integral approach to the Kontsevich quantization formula. Comm. Math. Phys. 212, 591–611 (2000). math.QA/9902090

    Article  MathSciNet  MATH  Google Scholar 

  5. Cho, C.H.: Products of Floer cohomology of torus fibers in toric Fano manifolds. Comm. Math. Phys.260, 613–640 (2005), math.SG/0412414

    Article  MathSciNet  MATH  Google Scholar 

  6. Costello, K.J.: Topological conformal field theories and Calabi-Yau categories. Adv. Math. 210, 165–214 (2007). math.QA/0412149

    Article  MathSciNet  MATH  Google Scholar 

  7. Fukaya, K.: Morse homotopy,A -category, and Floer homologies. In: Proceedings of GARC Workshop on Geometry and Topology ’93 (Seoul, 1993). Lecture Notes in Series, vol. 18, pp. 1–102. Seoul Nat. Univ., Seoul (1993)

    Google Scholar 

  8. Fukaya, K.: Mirror symmetry of abelian varieties and multi theta functions. J. Algebr. Geom.11, 393–512 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fukaya, K.: Asymptotic analysis, multivalued Morse theory, and mirror symmetry. In: Graphs and patterns in mathematics and theoretical physics. Proc. Symp. Pure Math., vol. 73, pp. 205–278. Am. Math. Soc., Providence, RI (2005)

    Google Scholar 

  10. Fukaya, K., Oh, Y.G.: Zero-loop open strings in the cotangent bundle and Morse homotopy. Asian J. Math. 1, 96–180 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fukaya, K., Oh, Y.G., Ohta, H., Ono, K. Lagrangian intersection Floer theory – anomaly and obstruction. AMS/IP Stud. Adv. Math., vol. 46. Am. Math. Soc., Providence, RI (2009)

    Google Scholar 

  12. Gerstenhaber, M.: The cohomology structure of an associative ring. Ann. Math.78, 267–288 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gerstenhaber, M.: On the deformation of rings and algebras. Ann. Math. 79, 59–103 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  14. Govindarajan, S., Jockers, H., Lerche, W., Warner, N.: Tachyon condensation on the elliptic curve. Nucl. Phys. B765, 240–286 (2007). hep-th/0512208

    Article  MathSciNet  MATH  Google Scholar 

  15. Gugenheim, V.K.A.M., Stasheff, J.D.: On perturbations and A -structures. Bull. Soc. Math. Belg. 38, 237–246 (1986)

    Google Scholar 

  16. Gugenheim, V.K.A.M., Lambe, L.A., Stasheff, J.D.: Algebraic aspects of Chen’s twisting cochain. Illinois J. Math.34, 485–502 (1990)

    MathSciNet  MATH  Google Scholar 

  17. Gugenheim, V.K.A.M., Lambe, L.A., Stasheff, J.D.: Perturbation theory in differential homological algebra II. Illinois J. Math. 35, 357–373 (1991)

    MathSciNet  MATH  Google Scholar 

  18. Harvey, F.R., Lawson, Jr., H.B.: Finite volume flows and Morse theory. Ann. Math. (2)153, 1–25 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hori, K., Vafa, C.: Mirror symmetry. Preprint. hep-th/0002222 (2000)

    Google Scholar 

  20. Huebschmann, J., Kadeishvili, T.: Small models for chain algebras. Math. Z. 207, 245–280 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kajiura, H.: Kronecker foliation, D1-branes and Morita equivalence of noncommutative two-tori. JHEP0208, 050 (2002). hep-th/0207097

    Article  MathSciNet  MATH  Google Scholar 

  22. Kajiura, H.: Homological mirror symmetry on noncommutative two-tori. hep-th/0406233 (2004)

    Google Scholar 

  23. Kajiura, H.: Star product formula of theta functions. Lett. Math. Phys. 75, 279–292 (2006). math.QA/0510307

    Article  MathSciNet  MATH  Google Scholar 

  24. Kajiura, H.: AnA -structure for lines in a plane. Int. Math. Res. Not.20, 3913–3955 (2009). math.QA/0703164

    MathSciNet  MATH  Google Scholar 

  25. Kajiura, H.: Categories of holomorphic line bundles on higher dimensional noncommutative complex tori. J. Math. Phys. 48, 053517 (2007). hep-th/0510119

    Article  MathSciNet  MATH  Google Scholar 

  26. Kajiura, H.: Higher theta functions associated to polygons in a torus, in preparation (2007)

    Google Scholar 

  27. Kajiura, H.: Noncommutative homotopy algebras associated with open strings. Rev. Math. Phys.19(1), 1–99 (2007) Based on doctoral thesis, The Univ. of Tokyo. math.QA/0306332

    Article  MathSciNet  MATH  Google Scholar 

  28. Kajiura, H.: Noncommutative tori and mirror symmetry. Proceedings for the workshop “New development of Operator Algebras”, RIMS Kokyuroku 1587: 27–72 (2008)

    Google Scholar 

  29. Kajiura, H., Stasheff, J.: Homotopy algebras inspired by classical open-closed string field theory. Comm. Math. Phys. 263, 553–581 (2006). math.QA/0410291

    Article  MathSciNet  MATH  Google Scholar 

  30. Kajiura, H., Stasheff, J.: Open-closed homotopy algebra in mathematical physics. J. Math. Phys.47, 023506 (2006). hep-th/0510118

    Article  MathSciNet  MATH  Google Scholar 

  31. Kapustin, A., Li, Y.: Topological correlators in Landau-Ginzburg models with boundaries. Adv. Theor. Math. Phys. 7, 727–749 (2004). hep-th/0305136

    Article  MathSciNet  MATH  Google Scholar 

  32. Kimura, T., Stasheff, J., Voronov, A.A.: On operad structures of moduli spaces and string theory. Comm. Math. Phys.171, 1–25 (1995). hep-th/9307114

    Article  MathSciNet  MATH  Google Scholar 

  33. Knapp, J., Omer, H.: Matrix factorizations and homological mirror symmetry on the torus. JHEP 03, 088 (2007). hep-th/0701269

    Article  MathSciNet  Google Scholar 

  34. Kontsevich, M.: Homological algebra of mirror symmetry. In: Proceedings of the International Congress of Mathematicians. vols. 1, 2 (Zürich, 1994), vol. 184, pp. 120–139. Birkhäuser, MA (1995). math.AG/9411018

    Google Scholar 

  35. Kontsevich, M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys.66(3), 157–216 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kontsevich, M., Soibelman, Y.: Homological mirror symmetry and torus fibrations. In: Symplectic geometry and mirror symmetry (Seoul, 2000). World Scientific, River Edge, NJ, pp. 203–263 (2001). math.SG/0011041

    Google Scholar 

  37. Kreussler, B.: Homological mirror symmetry in dimension one. In: Advances in algebraic geometry motivated by physics (Lowell, MA, 2000). Contem. Math., vol. 276, pp. 179–198. American Mathematical Society, Providence, RI (2001). math.AG/0012018

    Google Scholar 

  38. Lada, T., Stasheff, J.D.: Introduction to sh Lie algebras for physicists. Int. J. Theor. Phys. 32, 1087–1103 (1993). hep-th/9209099

    Article  MathSciNet  MATH  Google Scholar 

  39. Lazaroiu, C.I.: D-brane categories. Int. J. Mod. Phys. A18, 5299 (2003). hep-th/0305095

    Article  MathSciNet  MATH  Google Scholar 

  40. Markl, M., Shnider, S., Stasheff, J.: Operads in Algebra, Topology and Physics. Mathematical Surveys and Monographs, vol. 96. American Mathematical Society, Providence, RI (2002)

    Google Scholar 

  41. Polishchuk, A.: A -structures on an elliptic curve. Comm. Math. Phys. 247, 527 (2004). math.AG/0001048

    Google Scholar 

  42. Polishchuk, A., Schwarz, A.: Categories of holomorphic vector bundles on noncommutative two-tori. Comm. Math. Phys.236, 135 (2003). math.QA/0211262

    Article  MathSciNet  MATH  Google Scholar 

  43. Polishchuk, A., Zaslow, E.: Categorical mirror symmetry: the elliptic curve. Adv. Theor. Math. Phys. 2, 443–470 (1998). math.AG/9801119

    Article  MathSciNet  MATH  Google Scholar 

  44. Schlessinger, M., Stasheff, J.: Deformation theory and rational homotopy type. Preprint. University of North Carolina (1979)

    Google Scholar 

  45. Schwarz, A.: Theta functions on noncommutative tori. Lett. Math. Phys.58, 81–90 (2001). math.QA/0107186

    Article  MathSciNet  MATH  Google Scholar 

  46. Stasheff, J.D.: Homotopy associativity of H-spaces, I. Trans. Am. Math. Soc. 108, 293–312 (1963)

    MathSciNet  MATH  Google Scholar 

  47. Stasheff, J.D.: Homotopy associativity of H-spaces, II. Trans. Am. Math. Soc.108, 313–327 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  48. Stasheff, J.D.: The intrinsic bracket on the deformation complex of an associative algebra. JPAA 89, 231–235 (1993) Festschrift in Honor of Alex Heller

    MathSciNet  MATH  Google Scholar 

  49. Strominger, A., Yau, A.T., Zaslow, E.: Mirror symmetry is T-duality. Nucl. Phys. B479, 243–259 (1996). hep-th/9606040

    Article  MathSciNet  MATH  Google Scholar 

  50. Witten, E.: Supersymmetry and Morse theory. J. Diff. Geom. 17, 661–692 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  51. Witten, E.: Chern-Simons gauge theory as a string theory. Prog. Math.133, 637–678 (1995). hep-th/9207094

    MathSciNet  MATH  Google Scholar 

  52. Zwiebach, B.: Closed string field theory: Quantum action and the Batalin-Vilkovisky master equation. Nucl. Phys. B 390, 33–152 (1993). hep-th/9206084

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshige Kajiura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kajiura, H. (2011). Homological Perturbation Theory and Homological Mirror Symmetry. In: Cattaneo, A., Giaquinto, A., Xu, P. (eds) Higher Structures in Geometry and Physics. Progress in Mathematics, vol 287. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-4735-3_10

Download citation

Publish with us

Policies and ethics