Advertisement

Topics in Algebraic Deformation Theory

  • Anthony GiaquintoEmail author
Chapter
Part of the Progress in Mathematics book series (PM, volume 287)

Abstract

We give a selective survey of topics in algebraic deformation theory ranging from its inception to current times. Throughout, the numerous contributions of Murray Gerstenhaber are emphasized, especially the common themes of cohomology, infinitesimal methods, and explicit global deformation formulas.

Deformation theory Cohomology Quantization 

References

  1. Ba68.
    Barr, M.: Harrison homology, Hochschild homology, and triples. J. Algebra 8, 314–323 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  2. BFFLS78.
    Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation theory and quantization I: Deformation of symplectic structures, II: Physical applications. Ann. Phys. 111, 61–110; 111–151 (1978)MathSciNetzbMATHGoogle Scholar
  3. BD82.
    Belavin, A., Drinfel’d, V.: Solutions of the classical Yang-Baxter equation for simple Lie algebras. (Russian). Funktsional. Anal. i Prilozhen. 16(3), 1–29 (1982)MathSciNetGoogle Scholar
  4. BB92.
    Bergeron, F., Bergeron, N.: Orthogonal idempotents in the descent algebra of type B nand applications. J. Pure Appl. Algebra 79(2), 109–129 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  5. BW95.
    Bergeron, N., Wolfgang, H.L.: The decomposition of Hochschild cohomology and Gerstenhaber operations. J. Pure Appl. Algebra 104(3), 243–265 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  6. BTY07.
    Bieliavsky, P., Tang, X., Yao, Y.: Rankin-Cohen brackets and formal quantization. Adv. Math. 212(1), 293–314 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. BGGS04.
    Bonneau, P., Gerstenhaber, M., Giaquinto, A., Sternheimer, D.: Quantum groups and deformation quantization: explicit approaches and implicit aspects. J. Math. Phys. 45(10), 3703–3741 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  8. BG96.
    Braverman, A., Gaitsgory, D.: Poincare-Birkhoff-Witt theorem for quadratic algebras of Koszul type. J. Algebra 181(2), 315–328 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  9. CGW04.
    Caldararu, A., Giaquinto, A., Witherspoon, S.: Algebraic deformations arising from orbifolds with discrete torsion. J. Pure Appl. Algebra 187(1), 51–70 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. CF00.
    Cattaneo, A.S., Felder, G.: A path integral approach to the Kontsevich quantization formula. Comm. Math. Phys. 212(3), 591–611 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  11. CKTB05.
    Cattaneo, A., Keller, B., Torossian, C., Bruguieres, A.: Déformation, quantification, théorie de Lie. (French) [Deformation, quantization, Lie theory] Panoramas et Synthèses [Panoramas and Syntheses], 20. Société Mathématique de France, Paris (2005)Google Scholar
  12. CM04.
    Connes, A., Moscovici, H.: Rankin-Cohen brackets and the Hopf algebra of transverse geometry. Mosc. Math. J. 4(1), 111–130 (2004)MathSciNetzbMATHGoogle Scholar
  13. Do60.
    Douady, A.: Obstruction primaire á la déformation. Séminaire Henri Cartan exposé 4, 1–19 (1960–1961)Google Scholar
  14. DMZ07.
    Doubek, M., Markl, M., Zima, P.: Deformation theory (Lecture Notes). Arch. Math. (Brno) 43(5), 333–371 (2007)MathSciNetzbMATHGoogle Scholar
  15. Dr83.
    Drinfel’d, V.G.: On constant, quasiclassical solutions of the classical Yang-Baxter equation. Soviet Math. Dokl. 28(3), 667–671 (1992)MathSciNetzbMATHGoogle Scholar
  16. Dr86.
    Drinfel’d, V.G.: On quadratic commutation relations in the quasiclassical case [translation of Mathematical Physics, functional analysis (Russian), 25–34, 143, “Naukova Dumka”, Kiev, 1986; MR0906075 (89c:58048)]. Selected translations. Selecta Math. Soviet 11(4), 317–326 (1992)MathSciNetGoogle Scholar
  17. Dr92.
    Drinfel’d, V.G.: On some unsolved problems in quantum group theory. Lecture Notes in Mathematics, vol. 1510, pp. 1–8 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  18. EG02.
    Etingof, P., Ginzburg, V.: Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism. Invent. Math. 147(2), 243–348 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  19. EK96.
    Etingof, P., Kazhdan, D.: Quantization of Lie bialgebras. I. Selecta Math. (N.S.) 2(1), 1–41 (1996)Google Scholar
  20. ESS00.
    Etingof, P., Schedler, T., Schiffman, O.: Explicit quantization of dynamical r-matrices for finite dimensional semisimple Lie algebras. J. Am. Math. Soc. 13(3), 595–609 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  21. FN57.
    Frölicher, A., Nijenhuis, A.: A theorem on stability of complex structures. Proc. Natl. Acad. Sci. USA 43, 239–241 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  22. Fr07.
    Fronsdal, C.: Quantization on curves. Lett. Math. Phys. (Appendix by Kontsevich, M.) 79(2), 109–129 (2007)Google Scholar
  23. Ga90.
    Garsia, A.: Combinatorics of the free Lie algebra and the symmetric group. Analysis, et Cetera, pp. 309–382. Academic, MA (1990)Google Scholar
  24. Ge63.
    Gerstenhaber, M.: The cohomology structure of an associative ring. Ann. Math. 78, 267–288 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  25. Ge64.
    Gerstenhaber, M.: On the deformation of rings and algebras. Ann. Math. (2) 79, 59–103 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  26. Ge68.
    Gerstenhaber, M.: On the deformation of rings and algebras III. Ann. Math. (2) 88(1), 1–34 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  27. GG98.
    Gerstenhaber, M., Giaquinto, A.: Boundary solutions of the quantum Yang-Baxter equation and solutions in three dimensions. Lett. Math. Phys. 44(2), 131–141 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  28. GG08b.
    Gerstenhaber, M., Giaquinto, A.: Variation of algebras (Preprint, 2008)Google Scholar
  29. GS86.
    Gerstenhaber, M., Schack, S.D.: Relative Hochschild cohomology, rigid algebras and the Bockstein. J. Pure Appl. Algebra 43, 53–74 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  30. GS87.
    Gerstenhaber, M., Schack, S.D.: A Hodge-type decomposition for commutative algebra cohomology. J. Pure Appl. Algebra 48, 229–247 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  31. GS88.
    Gerstenhaber, M., Schack, S.D.: Algebraic cohomology and deformation theory. Deformation theory of algebras and structures and applications (Il Ciocco, 1986), 11–264, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 247. Kluwer, Dordrecht (1988)Google Scholar
  32. GS90a.
    Gerstenhaber, M., Schack, S.D.: Bialgebra cohomology, deformations, and quantum groups. Proc. Natl. Acad. Sci. USA 87(1), 478–481 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  33. GS90b.
    Gerstenhaber, M., Schack, S.D.: Algebras, bialgebras, quantum groups, and algebraic deformations. Deformation theory and quantum groups with applications to mathematical physics (Amherst, MA, 1990), pp. 51–92, Contemp. Math. vol. 134. Am. Math. Soc., RI (1992)Google Scholar
  34. GGS93.
    Gerstenhaber, M., Giaquinto, A., Schack, S.D.: Construction of quantum groups from Belavin-Drinfel’d infinitesimals. Quantum deformations of algebras and their representations. Israel Math. Conf. Proc. vol. 7, pp. 45–64. Bar-Ilan Univ., Ramat Gan (1993)Google Scholar
  35. GZ98.
    Giaquinto, A., Zhang, J.: Bialgebra actions, twists, and universal deformation formulas. J. Pure Appl. Algebra 128(02), 133–151 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  36. Hi05.
    Hinich, V.: Deformations of sheaves of algebras. Adv. Math. 195(1), 102–164 (2005). (math.AG/0310116)MathSciNetCrossRefzbMATHGoogle Scholar
  37. KS58.
    Kodaira, K., Spencer, D.C.: On deformations of complex analytic structures. Ann. Math. (2) 67, 328–466 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  38. Ko01.
    Kontsevich, M.: Deformation quantization of algebraic varieties, EuroConférence Moshé Flato 2000, Part III (Dijon). Lett. Math. Phys. 56(3), 271–294 (2001)MathSciNetCrossRefGoogle Scholar
  39. Ko97.
    Kontsevich, M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66(3), 157–216 (2003), (q-alg/9709040)MathSciNetCrossRefzbMATHGoogle Scholar
  40. KLO01.
    Kulish, P.P., Lyakhovsky, V.D., del Olmo, M.A.: Chains of twists for classical Lie algebras. J. Phys. A Math. Gen. 32, 8671–8684 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  41. Lo88.
    Loday, J.-L.: Partition eulérienne et opérations en homologie cyclique. C. R. Acad. Sci. Paris Sér. I Math. 307(7), 283–286 (1988)MathSciNetzbMATHGoogle Scholar
  42. Lo89.
    Loday, J.-L.: Opérations sur l’homologie cyclique des algèbres commutatives. Invent. Math. 96(1), 205–230 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  43. LVdB06.
    Lowen, W., Van den Bergh, M.: Deformation theory of abelian categories. Trans. Am. Math. Soc. 358, 5441–5483 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  44. LVdB09.
    Lowen, W., Van den Bergh, M.: A Hochschild cohomology comparison theorem for prestacks. Trans. Amer. Math. Soc. 363, 969–986 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  45. LS02.
    Lyakhovsky, V.D., Samsonov, M.E.: Elementary parabolic twist. J. Algebra Appl. 1(4), 413–424 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  46. Mar07.
    Markl, M.: Intrinsic brackets and the L -deformation theory of bialgebras. arXiv:math/0411456v6Google Scholar
  47. MS96.
    Markl, M., Shnider, S.: Cohomology of Drinfeld algebras: a homological algebra approach. Int. Math. Res. Not. 1996(9), 431–445 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  48. Mat97.
    Mathieu, O.: Homologies associated with Poisson structures. Deformation theory and symplectic geometry (Ascona, 1996). Math. Phys. Stud. vol. 20, pp. 177–199. Kluwer, Dordrecht (1997)Google Scholar
  49. Od02.
    Odesskii, A.V.: Elliptic algebras. (Russian) Uspekhi Mat. Nauk 57(6(348)), 87–122 (2002); Translation in Russian Math. Surveys 57(6), 1127–1162 (2002)Google Scholar
  50. Pi06.
    Pinczon, G.: On two theorems about symplectic reflection algebras. (math.QA/0612690)Google Scholar
  51. Ri67.
    Richardson, R.W.: On the rigidity of semi-direct products of Lie algebras. Pac. J. Math. 22(2), 339–344 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  52. Ri57.
    Riemann, B.: Theorie der Abel’schen Functionen. J. Reine Angew. Math. 54, 101–155 (1857)MathSciNetCrossRefGoogle Scholar
  53. Sc00.
    Schedler, T.: Proof of the GGS conjecture. Math. Res. Lett. 7(5–6), 801–826 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  54. Sta63.
    Stasheff, J.: Homotopy associativity of H-spaces. I, II. Trans. Am. Math. Soc. 108, 275–292 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  55. Sta93.
    Stasheff, J.: The intrinsic bracket on the deformation complex of an associative algebra, J. Pure Appl. Algebra 89, 231–235 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  56. Ste.
    Sternheimer, D.: The deformation philosophy, quantization and noncommutative space-time structures. Chapter 3, pp. 39–56, this volumeGoogle Scholar
  57. Sto91.
    Stolin, A.: On rational solutions of Yang-Baxter equation for \(\mathfrak{s}\mathfrak{l}(n)\). Math. Scand. 69, 57–80 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  58. VdB07.
    Van den Bergh, M.: On global deformation quantization in the algebraic case. J. Algebra 315(1), 326–395 (2007). (math.AG/0603200)MathSciNetCrossRefzbMATHGoogle Scholar
  59. Ye05.
    Yekutieli A.: Deformation quantization in algebraic geometry. Adv. Math. 198(1), 383–432 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Mathematics and StatisticsLoyola University ChicagoChicagoUSA

Personalised recommendations