Line Bundles over Loop Spaces

  • Jean-Luc Brylinski
Part of the Progress in Mathematics book series (MBC)


The theme of this chapter is that a Dixmier-Douady sheaf of groupoids with connective structure over a manifold M leads naturally to a line bundle over the free loop space LM. This is in complete analogy to the well-known fact that a line bundle with connection over M leads to a function over LM, its holonomy.


Line Bundle Isomorphism Class Boundary Component Central Extension Loop Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Jean-Luc Brylinski
    • 1
  1. 1.Department of MathematicsThe Penn State UniversityUniversity ParkUSA

Personalised recommendations