Higher Order Quantum Serre Relations

  • George Lusztig
Part of the Modern Birkhäuser Classics book series (MBC)


7.1.1. In this chapter we assume that we are given i ≠ j in I and e = ±1. Given n, m ∈ Z, we set
$${f_{i,j;n,m;e}} = \sum\limits_{r + s = m} {{{( - 1)}^r}{v_i}^{er( - \left\langle {i,j\prime} \right\rangle n - m + 1)}{\theta _i}^{(r)}{\theta _j}^{(n)}{\theta _i}^{(s)} \in {\rm{f}}} .$$


Hopf Algebra Quantum Group Finite Type Coxeter Group Divided Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • George Lusztig
    • 1
  1. 1.Department of MathematicsMITCambridgeUSA

Personalised recommendations