Multiphase Models of Tumour Growth

  • Sergey Astanin
  • Luigi Preziosi
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


Constitutive Equation Interaction Force Mass Balance Equation Mixture Theory Growth Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AM02]
    Ambrosi, D., Mollica, F.: On the mechanics of a growing tumor. Int. J. Engng. Sci.,40, 1297–1316 (2002)CrossRefMathSciNetGoogle Scholar
  2. [AM04]
    Ambrosi, D., Mollica, F.: The role of stress in the growth of a multicell spheroid. J. Math. Biol.,48, 477–499 (2004)MATHCrossRefMathSciNetGoogle Scholar
  3. [AM05]
    Araujo, R., McElwain, D.: A mixture theory for the genesis of residual stresses in growing tissues, I: A general formulation. SIAM J. Appl. Math.,65, 1261–1284 (2005)MATHCrossRefMathSciNetGoogle Scholar
  4. [AP02]
    Ambrosi, D., Preziosi, L.: On the closure of mass balance models for tumor growth. Math. Mod. Meth. Appl. Sci.,12, 737–754 (2002)MATHCrossRefMathSciNetGoogle Scholar
  5. [AP08]Ambrosi,
    Ambrosi, D., Preziosi, L.: umors as elasto-viscoplastic growing bodies. Biomechanics and Modeling in Mechanobiology (2008), submittedGoogle Scholar
  6. [AT08]Astanin,
    Astanin, S., Tosin, A.: Mathematical model of tumour cord growth along the source of nutrient. Math. Mod. Nat. Phen. (2008), in pressGoogle Scholar
  7. [BB90]
    Bear, J., Bachmat, Y.: Introduction to Modeling of Transport Phenomena in Porous Media. Kluwer Academic Publishers, Dordrecht (1990)Google Scholar
  8. [BBL02]
    Breward, C., Byrne, H.: Lewis, C., The role of cell-cell interactions in a two-phase model for avascular tumor growth. J. Math. Biol.,45, 125–152 (2002)MATHCrossRefMathSciNetGoogle Scholar
  9. [BBL03]
    Breward, C., Byrne, H., Lewis, C.: A multiphase model describing vascular tumor growth. Bull. Math. Biol.,65, 609–640 (2003)CrossRefGoogle Scholar
  10. [BHN+00]
    Baumgartner, W., Hinterdorfer, P., Ness, W., Raab, A., Vestweber, D., Schindler, H., Drenckhahn, D.: Cadherin interaction probed by atomic force microscopy. Proc. Nat. Acad. Sci. USA,97, 4005–4010 (2000)CrossRefGoogle Scholar
  11. [BKMP03]
    Byrne, H., King, J., McElwain, D., Preziosi, L.: A two-phase model of solid tumor growth. Appl. Math. Letters,16, 567–573 (2003)MATHCrossRefMathSciNetGoogle Scholar
  12. [Bow76]
    Bowen, R.M.: The theory of mixtures. In: A. Eringen (ed.) Continuum Physics, vol. 3, Academic Press, New York (1976)Google Scholar
  13. [BP04]
    Byrne, H., Preziosi, L.: Modeling solid tumor growth using the theory of mixtures. Math. Med. Biol.,20, 341–366 (2004)CrossRefGoogle Scholar
  14. [CDLV05]
    Canetta, E., Duperray, A., Leyrat, A., Verdier, C.: Measuring cell viscoelastic properties using a force-spectrometer: Influence of the protein-cytoplasm interactions. Biorheology,42, 298–303 (2005)Google Scholar
  15. [CGP06]
    Chaplain, M., Graziano, L., Preziosi, L.: Mathematical modelling of the loss of tissue compression responsiveness and its role in solid tumour development. Math. Med. Biol.,23, 197–229 (2006)MATHCrossRefGoogle Scholar
  16. [CM97]
    Chambers, A., Matrisian, L.: Changing views of the role of matrix metalloproteinases in metastasis. J. Natl. Cancer Inst.,89, 1260–1270 (1997)CrossRefGoogle Scholar
  17. [FBK+03]
    Franks, S., Byrne, H., King, J., Underwood, J., Lewis, C.: Modelling the early growth of ductal carcinoma in situ of the breast. J. Math. Biol.,47, 424–452 (2003)MATHCrossRefMathSciNetGoogle Scholar
  18. [FBM+03]
    Franks, S., Byrne, H., Mudhar, H., Underwood, J., Lewis, C.: Mathematical modelling of comedo ductal carcinoma in situ of the breast. Math. Med. Biol.,20, 277–308 (2003)MATHCrossRefGoogle Scholar
  19. [FFSS98]
    Forgacs, G., Foty, R., Shafrir, Y., Steinberg, M.: Viscoelastic properties of living embryonic tissues: A quantitative study. Biophys. J.,74, 2227– 2234 (1998)CrossRefGoogle Scholar
  20. [FK03]
    Franks, S., King, J.: Interactions between a uniformly proliferating tumor and its surroundings. Uniform material properties. Math. Med. Biol.,20, 47–89 (2003)MATHCrossRefGoogle Scholar
  21. [GG07]Gillies,
    Gillies, R., Gatenby, R.: Hypoxia and adaptive landscapes in the evolution of carcinogenesis. Cancer Metastasis Rev. (2007), e-publicationGoogle Scholar
  22. [GGG+06]
    Gatenby, R., Gawlinski, E., Gmitro, A., Kaylor, B., Gillies, R.: Acidmediated tumour invasion: A multidisciplinary study. Cancer Res.,66, 5216–5223 (2006)CrossRefGoogle Scholar
  23. [GP07]
    Graziano, L., Preziosi, L.: Mechanics in tumour growth. In: F. Mollica, L. Preziosi, K. Rajagopal (eds.) Modeling of Biological Materials, 267– 328, Birkhäuser, Boston, MA (2007)Google Scholar
  24. [HHLM89]
    Hou, J., Holmes, M., Lai, W., Mow, V.: Boundary conditions at the cartilage-synovial fluid interface for joint lubrication and theoretical verifications. J. Biomech. Engng.,111, 78–87 (1989)Google Scholar
  25. [HR02]
    Humphrey, J., Rajagopal, K.: A constrained mixture model for growth and remodeling of soft tissues. Math. Mod. Meth. Appl. Sci.,12, 407– 430 (2002)MATHCrossRefMathSciNetGoogle Scholar
  26. [Iord08]
    Iordan, A., Duperray, A., Verdier, C.: Fractal approach to the rheology of concentrated cell suspension. Phys. Rev. E,77, 011911 (2008)CrossRefGoogle Scholar
  27. [Jay83]
    Jayaraman, G.: Water transport in the arterial wall. A theoretical study. J. Biomech.,16, 833–840 (1983)Google Scholar
  28. [Ken79]
    Kenion, D.: A mathematical model of water flux through aortic tissue. Bull. Math. Biol.,41, 79–90 (1979)MathSciNetGoogle Scholar
  29. [KLM90]
    Kwan, M., Lai, W., Mow, V.: A finite deformation theory of cartilage and other soft hydrated connective tissues: Part I – Equilibrium results. J. Biomech.,23, 145–155 (1990)CrossRefGoogle Scholar
  30. [KT87]
    Klanchar, M., Tarbell, J.: Modeling water flow through arterial tissue. Bull. Math. Biol.,49, 651–669 (1987)MATHMathSciNetGoogle Scholar
  31. [LHM90]
    Lai, W., Hou, J., Mow, V.: A triphasic theory for the swelling properties of hydrated charged soft biological tissues. In: Biomechanics of Diarthroidal Joints, vol. 1, 283–312, Springer, New York (1990)Google Scholar
  32. [Mat92]
    Matrisian, L.: The matrix-degrading metalloproteinases. Bioessays,14, 455–463 (1992)CrossRefGoogle Scholar
  33. [MHL84]
    Mow, V., Holmes, M., Lai, W.: Fluid transport and mechanical problems of articular cartilage: A review. J. Biomech.,17, 377–394 (1984)CrossRefGoogle Scholar
  34. [MKLA80]
    Mow, V., Kuei, S., Lai, W., Armstrong, C.: Biphasic creep and stress relaxation of articular cartilage: Theory and experiment. J. Biomech. Engng.,102, 73–84 (1980)Google Scholar
  35. [ML79]
    Mow, V., Lai, W.: Mechanics of animal joints. Ann. Rev. Fluid Mech.,11, 247–288 (1979)CrossRefGoogle Scholar
  36. [MPR07]
    Mollica, F., Preziosi, L., Rajagopal, K.: Modelling of Biological Materials. Birkhäuser, Boston, MA (2007)CrossRefGoogle Scholar
  37. [MRS90]
    Mow, V., Ratcliffe, A., Savio, L.Y: (eds.) Biomechanics of Diarthroidal Joints. Springer-Verlag, New York (1990)Google Scholar
  38. [NC02]Nelson,
    Nelson, D., Cox, M.: I principi di biochimica di Lehninger. Zanichelli (2002), translated by M. Averna, E. Melloni, A. SdraffaGoogle Scholar
  39. [Nic85]
    Nicholson, C.: Diffusion from an injected volume of a substance in brain tissue with arbitrary volume fraction and tortuosity. Brain Res.,333, 325–329 (1985)CrossRefGoogle Scholar
  40. [OVCG87]
    Oomens, C., Van Campen, D., Grootenboer, H.: A mixture approach to the mechanics of skin. J. Biomech.,20, 877–885 (1987)CrossRefGoogle Scholar
  41. [Pre89]
    Preziosi, L.: On an invariance property of the solution to Stokes first problem for viscoelastic fluids. J. Non-Newtonian Fluid Mech.,33, 225-228 (1989)MATHCrossRefGoogle Scholar
  42. [PF01]
    Preziosi, L., Farina, A.: On Darcy’s law for growing porous media. Int. J. Nonlinear Mech.,37, 485–491 (2001)CrossRefGoogle Scholar
  43. [PJ87]
    Preziosi, L., Joseph, D.: Stokes’ first problem for viscoelastic fluids. J. Non-Newtonian Fluid Mech.,25, 239–259 (1987)MATHCrossRefGoogle Scholar
  44. [PT08]Preziosi,
    Preziosi, L., Tosin, A.: Multiphase modeling of tumor growth and extracellular matrix interaction: Mathematical tools and applications. J. Math. Biol. (2008), in pressGoogle Scholar
  45. [PWB+97]
    Parson, S., Watson, S., Brown, P., Collins, H., Steele, R.: Matrix metalloproteinases. Brit. J. Surg.,84, 160–166 (1997)CrossRefGoogle Scholar
  46. [RHR03]
    Rao, I., Humphrey, J., Rajagopal, K.: Biological growth and remodeling: A uniaxial example with possible application to tendons and ligaments. Comp. Mod Engr. Sci.,4, 439–455 (2003)MATHGoogle Scholar
  47. [RT95]
    Rajagopal, K., Tao, L.: Mechanics of Mixtures. World Scientific, Singapore (1995)MATHGoogle Scholar
  48. [SCZM06]
    Sarntinoranont, M., Chen, X., Zhao, J., Mareci, T.: Computational model of interstitial transport in the spinal cord using diffusion tensor imaging. Ann. Biomed. Eng.,34, 1304–1321 (2006)CrossRefGoogle Scholar
  49. [SGG+07]
    Smallbone, K., Gatenby, R., Gillies, R., Maini, P., Gavaghan, D.: Metabolic changes during carcinogenesis: Potential impact on invasiveness. J. Theor. Biol.,244, 703–713 (2007)CrossRefMathSciNetGoogle Scholar
  50. [SGH+05]
    Sun, M., Graham, J., Hegedus, B., Marga, F., Zhang, Y., Forgacs, G., Grandbois, M.: Multiple membrane tethers probed by atomic force microscopy. Biophys. J.,89, 4320–4329 (2005)CrossRefGoogle Scholar
  51. [SS86]
    Sorek, S., Sideman, S.: A porous medium approach for modelling heart mechanics. Part 1: Theory. Math. Biosci.,81, 1–14 (1986)MATHCrossRefMathSciNetGoogle Scholar
  52. [SSHC96]
    Stetler-Stevenson, W., Hewitt, R., Corcoran, M.: Matrix metallo– proteinases and tumour invasion: From correlation to causality to the clinic. Cancer Biol.,7, 147–154 (1996)CrossRefGoogle Scholar
  53. [TIZB84]
    Tsaturyan, A., Izacov, V., Zhelamsky, S., Bykov, B.: Extracellular fluid filtration as the reason for the viscoelastic behaviour of the passive myocardium. J. Biomech.,17, 749–755 (1984)CrossRefGoogle Scholar
  54. [WSF05]
    Winters, B., Shepard, S., Foty, R.: Biophysical measurement of brain tumor cohesion. Int. J. Cancer,114, 371–379 (2005)CrossRefGoogle Scholar
  55. [YTC94]
    Yang, M., Taber, L., Clark, E.: A nonlinear poroelastic model for the trabecular embryonic heart. J. Biomech. Engng.,116, 213–223 (1994)CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 2008

Authors and Affiliations

  1. 1.Dipartimento di MatematicaPolitecnico di TorinoItaly

Personalised recommendations