Nonlinear Modeling and Simulation of Tumor Growth

  • Vittorio Cristini
  • Hermann B. Frieboes
  • Xiaongrong Li
  • John S. Lowengrub
  • Paul Macklin
  • Sandeep Sanga
  • Steven M. Wise
  • Xiaoming Zheng
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


Necrotic Core Antiangiogenic Therapy Noncancerous Tissue Endothelial Cell Density Tumor Morphology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbott, R.G., Forrest, S., Pienta, K.J.: Simulating the hallmarks of cancer. Artif. Life,12, 617–634 (2006)Google Scholar
  2. 2.
    Acker, H.: Spheroids in Cancer Research: Methods and Perspectives. Springer- Verlag, Berlin and New York (1984)Google Scholar
  3. 3.
    Adam, J.: General aspects of modeling tumor growth and the immune response. In: Adam, J., Bellomo, N. (eds), A Survey of Models on Tumor Immune Systems Dynamics. Birkhauser, Boston, MA (1996)Google Scholar
  4. 4.
    Alarcón, T., Byrne, H.M., Maini, P.K.: A cellular automaton model for tumour growth in inhomogeneous environment. J. Theor. Biol.,225, 257–274 (2003)Google Scholar
  5. 5.
    Ambrosi, D., Guana, F.: Stress-modulated growth. Math. Mech. Solids,12, 319–343 (2007)MATHMathSciNetGoogle Scholar
  6. 6.
    Ambrosi, D., Mollica, F.: On the mechanics of a growing tumor. Int. J. Eng. Sci.,40, 1297–1316 (2002)MathSciNetGoogle Scholar
  7. 7.
    Ambrosi, D., Preziosi, L.: On the closure of mass balance models for tumor growth. Math. Mod. Meth. Appl. Sci.,12, 737–754 (2002)MATHMathSciNetGoogle Scholar
  8. 8.
    Andersen, H., Mejlvang, J., Mahmood, S., Gromova, I., Gromov, P., Lukanidin, E., Kriajevska, M., Mellon, J.K., Tulchinsky, E.: Immediate and delayed effects of E-cadherin inhibition on gene regulation and cell motility in human epidermoid carcinoma cells. Mol. Cell. Biol.,25, 9138–9150 (2005)Google Scholar
  9. 9.
    Anderson, A., Zheng, X., Cristini, V.: Adaptive unstructured volume remeshing-I: The method. J. Comput. Phys.,208, 616–625 (2005)MATHMathSciNetGoogle Scholar
  10. 10.
    Anderson, A.R.A.: A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion. IMA Math. Appl. Med. Biol.,22, 163–186 (2005)MATHGoogle Scholar
  11. 11.
    Anderson, A.R.A., Chaplain, M.A.J.: Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol.,60, 857–900 (1998)MATHGoogle Scholar
  12. 12.
    Anderson, A.R.A. Chaplain, M.A.J., Newman, E.L., Steele, R.J.C., Thompson, A.M.: Mathematical modeling of tumour invasion and metastasis, J. Theor. Med.,2, 129–154 (2000)MATHGoogle Scholar
  13. 13.
    Anderson, A.R.A., Chaplain, M.A.J., Lowengrub, J.S., Macklin, P., McDougall, S.: Nonlinear simulation of tumour invasion and angiogenesis. Bull. Math. Biol., (in preparation)Google Scholar
  14. 14.
    Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse interface methods in fluid mechanics. Ann. Rev. Fluid Mech.,30, 139–165 (1998)MathSciNetGoogle Scholar
  15. 15.
    Araujo, R.P., McElwain, D.L.S.: A history of the study of solid tumor growth: the contribution of mathematical modeling. Bull. Math. Biol.,66, 1039–1091 (2004)MathSciNetGoogle Scholar
  16. 16.
    Araujo, R.P., McElwain, D.L.S.: A linear-elastic model of anisotropic tumor growth. Eur. J. Appl. Math.,15, 365–384 (2004)MATHMathSciNetGoogle Scholar
  17. 17.
    Araujo, R.P., McElwain, D.L.S.: A mixture theory for the genesis of residual stresses in growing tissues II: solutions to the biphasic equations for a multicell spheroid. SIAM J. Appl. Math.,66, 447–467 (2005)MATHMathSciNetGoogle Scholar
  18. 18.
    Augustin, H.G.: Tubes, branches, and pillars: the many ways of forming a new vasculature. Circ. Research,89, 645–647 (2001)Google Scholar
  19. 19.
    Bardelli, A., Basile, M.L., Audero, E., Giordano, S., Wennström, S., Ménard, S., Comoglio, P.M., Ponzetto, C.: Concomitant activation of pathways downstream of Grb2 and PI 3-kinase is required for MET-mediated metastasis. Oncogene,18, 1139–1146 (1999)Google Scholar
  20. 20.
    Batchelor, G.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1967)MATHGoogle Scholar
  21. 21.
    Bauer, T.W., Liu, W.B., Fan, F., Camp, E.R., Yang, A., Somcio, R.J., Bucana, C.D., Callahan, J., Parry, G.C., Evans, D.B., Boyd, D.D., Mazar, A.P., Ellis, L.M.: Targeting of urokinase plasminogen activator receptor in human pancreatic carcinoma cells inhibits c-met- and insulin-like growth factor-1 receptormediated migration and invasion and orthotopic tumor growth in mice. Cancer Res.,65, 7775–7781 (2005)Google Scholar
  22. 22.
    Bearer, E.L., Cristini, V.: Computational modeling identifies morphologic predictors of tumor invasion. Science, (in review)Google Scholar
  23. 23.
    Bello, L., Lucini, V., Costa, F., Pluderi, M., Giussani, C., Acerbi, F., Carrabba, G., Pannacci, M., Caronzolo, D., Grosso, S., Shinkaruk, S., Colleoni, F., Canron, X., Tomei, G., Deleris, G., Bikfalvi, A.: Combinatorial administration of molecules that simultaneously inhibit angiogenesis and invasion leads to increased therapeutic efficacy in mouse models of malignant glioma. Clin. Cancer Res.,10, 4527–4537 (2004)Google Scholar
  24. 24.
    Bellomo, N., Preziosi, L.: Modelling and mathematical problems related to tumor evolution and its interaction with the immune system. Math. Comput. Modelling,32, 413–452 (2000)MATHMathSciNetGoogle Scholar
  25. 25.
    Bellomo, N., de Angelis, E., Preziosi, L.: Multiscale modelling and mathematical problems related to tumor evolution and medical therapy. J. Theor. Med.,5, 111–136 (2003)MATHGoogle Scholar
  26. 26.
    Berger, M., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comp. Phys.,82, 64–84 (1989)MATHGoogle Scholar
  27. 27.
    Bernsen, H.J.J.A., Van der Kogel, A.J.: Antiangiogenic therapy in brain tumor models. J. Neuro-oncology,45, 247–255 (1999)Google Scholar
  28. 28.
    Bloemendal, H.J., Logtenberg, T., Voest, E.E.: New strategies in anti-vascular cancer therapy. Euro. J. Clinical Investig.,29, 802–809 (1999)Google Scholar
  29. 29.
    Boccaccio, C., Andò, M., Tamagnone, L., Bardelli, A., Michieli, P., Battistini, C., Comoglio, P.M.: Induction of epithelial tubules by growth factor HGF depends on the STAT pathway. Nature,391, 285–288 (1998)Google Scholar
  30. 30.
    Brandt, A.: Multi-level adaptive solutions to boundary-value problems, Math. Comput.,31, 333–390 (1977)MATHMathSciNetGoogle Scholar
  31. 31.
    Breward, C., Byrne, H., Lewis, C.: A multiphase model describing vascular tumour growth. Bull. Math. Biol.,65, 609–640 (2003)Google Scholar
  32. 32.
    Brizel, D.M., Scully, S.P., Harrelson, J.M., Layfield, L.J., Bean, J.M., Prosnitz, L.R., Dewhirst, M.W.: Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res.,56, 941–943 (1996)Google Scholar
  33. 33.
    Bullitt, E., Zeng, D., Gerig, G., Aylward, S., Joshi, S., Smith, J.K., Lin, W., Ewend, M.G.: Vessel tortuosity and brain tumor malignance: a blinded study. Acad. Radiol.,12, 1232–1240 (2005)Google Scholar
  34. 34.
    Bussolino, F., Arese, M., Audero, E., Giraudo, E., Marchiò, S., Mitola, S., Primo, L., Serini, G.: Biological aspects of tumour angiogenesis. In: Cancer Modelling and Simulation. Chapman – Hall/CRC, London (2003)Google Scholar
  35. 35.
    Byrne, H.M.: The importance of intercellular adhesion in the development of carcinomas. IMA J. Math. Med. Biol.,14, 305–323 (1997)MATHGoogle Scholar
  36. 36.
    Byrne, H.M., Alarcón, T., Owen, M.R., Webb, S.D., Maini, P.K.: Modeling aspects of cancer dynamics: a review. Philos. Trans. R. Soc. A,364, 1563–1578 (2006)Google Scholar
  37. 37.
    Byrne, H.M., Chaplain, M.A.J.: Growth of nonnecrotic tumors in the presence and absence of inhibitors. Math. Biosci.,130, 151–181 (1995)MATHGoogle Scholar
  38. 38.
    Byrne, H.M., Chaplain, M.A.J.: Growth of necrotic tumors in the presence and absence of inhibitors. Math. Biosci.,135, 187–216 (1996)MATHGoogle Scholar
  39. 39.
    Byrne, H.M., Chaplain, M.A.J.: Modelling the role of cell-cell adhesion in the growth and development of carcinomas. Math. Comput. Modeling,24, 1–17 (1996)MATHGoogle Scholar
  40. 40.
    Byrne, H.M., Chaplain, M.A.J.: Free boundary value problems associated with the growth and development of multicellular spheroids. Eur. J. Appl. Math.,8, 639–658 (1997)MATHMathSciNetGoogle Scholar
  41. 41.
    Byrne, H.M., Matthews, P.: Asymmetric growth of models of avascular solid tumors: exploiting symmetries. IMA J. Math. Appl. Med. Biol.,19, 1–29 (2002)MATHGoogle Scholar
  42. 42.
    Byrne, H., Preziosi, L.: Modelling solid tumour growth using the theory of mixtures. Math. Med. Biol.,20, 341–366 (2003)MATHGoogle Scholar
  43. 43.
    Cairns, R.A., Kalliomaki, T., Hill, R.P.: Acute (cyclic) hypoxia enhances spontaneous metastasis of KHT murine tumors. Cancer Res.,61, 8903–8908 (2001)Google Scholar
  44. 44.
    Carmeliet, P., Jain, R.K.: Angiogenesis in cancer and other diseases. Nature,407, 249–257 (2000)Google Scholar
  45. 45.
    Chaplain, M.A.J.: Avascular growth, angiogenesis and vascular growth in solid tumours: the mathematic modelling of the stages of tumour development. Math. Comput. Modelling,23, 47–87 (1996)MATHGoogle Scholar
  46. 46.
    Chaplain, M.A.J.: Pattern formation in cancer. In: Chaplain, M.A.J., Singh, G.D., MacLachlan, J.C. (eds), On Growth and Form: Spatio-Temporal Pattern Formation in Biology. Wiley Series in Mathematical and Computational Biology. Wiley, New York (2000)Google Scholar
  47. 47.
    Chaplain, M.A.J., Anderson, A.: Mathematical modelling of tissue invasion. In: Cancer Modelling and Simulation. Chapman – Hall/CRC, London (2003)Google Scholar
  48. 48.
    Chaplain, M.A.J., Ganesh, M., Graham, I.G.: Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth. J. Math. Biol.,42, 387–423 (2001)MATHMathSciNetGoogle Scholar
  49. 49.
    Chaplain, M.A.J., Graziano, L., Preziosi, L.: Mathematical modelling of the loss of tissue compression responsiveness and its role in solid tumour development. Math. Med. Biol.,23, 192–229 (2006)Google Scholar
  50. 50.
    Chaplain, M.A.J., Lolas, G.: Mathematical modeling of cancer cell invasion of tissue: the role of the urokinase plasminogen activation system. Math. Mod. Meth. Appl. Sci.,15, 1685–1734 (2005)MATHMathSciNetGoogle Scholar
  51. 51.
    Chaplain, M.A.J., Stuart, A.: A model mechanism for the chemotactic response of endothelial cells to tumor angiogenesis factor. IMA J. Math. Appl. Med. Biol.,10, 149–168 (1993)MATHGoogle Scholar
  52. 52.
    Condeelis, J., Singer, R.H., Segall, J.E.: The great escape: when cancer cells hijack the genes for chemotaxis and motility. Annu. Rev. Cell Dev. Biol.,21, 695–718 (2005)Google Scholar
  53. 53.
    Cristini, V., Blawzdziewicz, J., Loewenberg, M.: An adaptive mesh algorithm for evolving surfaces: Simulations of drop breakup and coalescence, J. Comput. Phys.,168, 445–463 (2001)MATHGoogle Scholar
  54. 54.
    Cristini, V., Frieboes, H.B., Gatenby, R., Caserta, S., Ferrari, M., Sinek, J.: Morphological instability and cancer invasion. Clin. Cancer Res.,11, 6772–6779 (2005)Google Scholar
  55. 55.
    Cristini, V., Gatenby, R., Lowengrub, J.: Multidisciplinary studies of tumor invasion and the role of the microenvironment. NIH 1R01CA127769-01. (2006)Google Scholar
  56. 56.
    Cristini, V., Li, X., Lowengrub, J., Wise, S.: Nonlinear simulations of solid tumor growth using a mixture model: Invasion and branching. J. Math. Biol., (in press)Google Scholar
  57. 57.
    Cristini, V., Lowengrub, J.: Three-dimensional crystal growth. I. Linear analysis and self-similar evolution. J. Crystal Growth,240, 267–276 (2002)Google Scholar
  58. 58.
    Cristini, V., Lowengrub, J.S., Nie, Q.: Nonlinear simulation of tumor growth. J. Math. Biol.,46, 191–224 (2003)MATHMathSciNetGoogle Scholar
  59. 59.
    Date, K., Matsumoto, K., Kuba, K., Shimura, H., Tanaka, M., Nakamura, T.: Inhibition of tumor growth and invasion by a four-kringle antagonist (HGF/NK4) for hepatocyte growth factor. Oncogene,17, 3045–3054 (1998)Google Scholar
  60. 60.
    DeJaeger, K., Kavanagh, M.C., Hill, R.: Relationship of hypoxia to metastatic ability in rodent tumors. Br. J. Cancer,84, 1280–1285 (2001)Google Scholar
  61. 61.
    Derycke, L., Van Marck, V., Depypere, H., Bracke, M.: Molecular targets of growth, differentiation, tissue integrity, and ectopic cell death in cancer cells. Cancer Biother. Radiopharm.,20, 579–588 (2005)Google Scholar
  62. 62.
    Eble, J.A., Haier, J.: Integrins in cancer treatment. Curr. Cancer Drug Targets,6, 89–105 (2006)Google Scholar
  63. 63.
    Elvin, P., Garner, A.P.: Tumour invasion and metastasis: challenges facing drug discovery. Curr. Opin. Pharmacol.,5, 374–381 (2005)Google Scholar
  64. 64.
    Enam, S.A., Rosenblum, M.L., Edvardsen, K.: Role of extracellular matrix in tumor invasion: migration of glioma cells along fibronectinpositive mesenchymal cell processes. Neurosurgery,42, 599–608 (1998)Google Scholar
  65. 65.
    Erler, J.T., Bennewith, K.L., Nicolau, M., Dornhoefer, N., Kong, C., Le, Q.-T., Chi, J.-T.A., Jeffrey, S.S., Siaccia, A.J.: Lysyl oxidase is essential for hypoxiainduced metastasis. Nature,440, 1222–1226 (2006)Google Scholar
  66. 66.
    Esteban, M.A., Maxwell, P.H.: HIF, a missing link between metabolism and cancer. Nature Med.,11, 1047–1048 (2005)Google Scholar
  67. 67.
    Fallenstein, G.T., Hulce, V.D., Melvin, J.W.: Dynamic mechanical properties of human brain tissue. J. Biomechanics,2, 217–226 (1969)Google Scholar
  68. 68.
    Festjens, N., Vanden Berghe, T., Vandenabeele, P.: Necrosis, a well orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim. Biophys. Acta,1757, 1371–1387 (2006)Google Scholar
  69. 69.
    Forsythe, J.A., Jiang, B.H., Iyer, N.V., Agani, F., Leung, S.W., Koos, R.D., Semenza, G.L.: Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell. Bio.,16, 4604–13 (1996)Google Scholar
  70. 70.
    Freyer, J.P.: Role of necrosis in regulating the growth saturation of multicellular spheroids. Cancer Res.,48, 2432–2439 (1988)Google Scholar
  71. 71.
    Frieboes, H.B., Lowengrub, J.S., Wise, S., Zheng, X., Macklin, P., Bearer, E.L., Cristini, V.: Computer simulation of glioma growth and morphology. NeuroImage,37, S59–S70 (2007)Google Scholar
  72. 72.
    Frieboes, H.B., Wise, S.M., Lowengrub, J.S., Cristini, V.: Three dimensional multispecies nonlinear tumor growth-II: Investigation of tumor invasion. J. Theor. Biol., (in review)Google Scholar
  73. 73.
    Frieboes, H.B., Zheng, X., Sun, C.-H., Tromberg, B., Gatenby, R., Cristini, V.: An integrated computational/experimental model of tumor invasion. Cancer Res.,66, 1597–1604 (2006)Google Scholar
  74. 74.
    Friedl, P.: Prespecification and plasticity: shifting mechanisms of cell migration. Curr. Opin. Cell Biol.,16, 14–23 (2004)Google Scholar
  75. 75.
    Friedl, P., Brocker, E., Zanker, K.: Integrins, cell matrix interactions and cell migration strategies: fundamental differences in leukocytes and tumor cells. Cell Adhe. Commun.,6, 225 (1998)CrossRefGoogle Scholar
  76. 76.
    Friedl, P., Hegerfeldt, Y., Tilisch, M.: Collective cell migration in morphogenesis and cancer. Int. J. Dev. Biol.,48, 441–449 (2004)Google Scholar
  77. 77.
    Friedl, P., Wolf, A.: Tumor cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer,3, 362–374 (2003)Google Scholar
  78. 78.
    Friedman, A.: A hierarchy of cancer models and their mathematical challenges. Discrete Cont. Dyn. Systems Ser. B,4, 147–159 (2004)MATHGoogle Scholar
  79. 79.
    Friedman, A., Reitich, F.: Analysis of a mathematical model for the growth of tumors. J. Math. Biol.,38, 262 (1999)MATHMathSciNetGoogle Scholar
  80. 80.
    Friedman, A., Reitich, F.: On the existence of spatially patterned dormant malignancies in a model for the growth of non-necrotic vascular tumors. Math. Mod. Meth. Appl. Sci.,11, 601–625 (2001)MATHMathSciNetGoogle Scholar
  81. 81.
    Galaris, D., Barbouti, A., Korantzopoulos, P.: Oxidative stress in hepatic ischemia-reperfusion injury: the role of antioxidants and iron chelating compounds. Current Pharma. Design,12, 2875–2890 (2006)Google Scholar
  82. 82.
    Garber, K.: Energy boost: theWarburg effect returns in a new theory of cancer. J. Natl. Cancer Inst.,96, 1805–1806 (2004)CrossRefGoogle Scholar
  83. 83.
    Garcke, H., Nestler, B., Stinner, B.: A diffuse interface model for alloys with multiple components and phases, SIAM J. Appl. Math.,64, 775–799 (2004)MATHMathSciNetGoogle Scholar
  84. 84.
    Gatenby, R., Gawlinski, E.: A reaction-diffusion model of cancer invasion. Cancer Res.,56, 5745 (1996)Google Scholar
  85. 85.
    Gatenby, R.A., Gawlinski, E.T.: The glycolytic phenotype in carcinogenesis and tumor invasion: insights through mathematical models. Cancer Res.,63, 3847–3854 (2003)Google Scholar
  86. 86.
    Gatenby, R.A., Gawlinski, E.T., Gmitro, A.F., Kaylor, B., Gillies, R.J.: Acidmediated tumor invasion: a multidisciplinary study. Cancer Res.,66, 5216–5223 (2006)Google Scholar
  87. 87.
    Graeber, T.G., Osmanian, C., Jacks, T., Housman, D.E., Koch, C.J., Lowe, S.W., Giaccia, A.J.: Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature,379, 88–91 (1996)Google Scholar
  88. 88.
    Greenspan, H.P.: Models for the growth of a solid tumor by diffusion. Stud. Appl. Math. LI,4, 317–340 (1972)Google Scholar
  89. 89.
    Greenspan, H.P.: On the growth and stability of cell cultures and solid tumors. J. Theor. Biol.,56, 229–242 (1976)MathSciNetGoogle Scholar
  90. 90.
    Harris, A.L.: Hypoxia—a key regulatory factor in tumor growth. Nature Rev. Cancer2, 38–47 (2002)Google Scholar
  91. 91.
    Hashizume, H., Baluk, P., Morikawa, S., McLean, J.W., Thurston, G., Roberge, S., Jain, R.K., McDonald, D.M.: Openings between defective endothelial cells explain tumor vessel leakiness. American J. Pathology,156, 1363–80 (2000)Google Scholar
  92. 92.
    Hayot, C., Debeir, O., Van Ham, P., Van Damme, M., Kiss, R., Decaestecker, C.: Characterization of the activities of actin-affecting drugs on tumor cell migration. Toxicology Appl. Pharma.,211, 30–40 (2006)Google Scholar
  93. 93.
    Helmlinger, G., Yuan, F., Dellian, M., Jain, R.K.: Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat. Med.,3, 177–182 (1997)Google Scholar
  94. 94.
    Höckel, M., Schlenger, K., Aral, B., Mitze, M., Schaffer, U., Vaupel, P.: Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res.,56, 4509–4515 (1996)Google Scholar
  95. 95.
    Höckel, M., Vaupel, P.: Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J. Natl. Cancer Inst.,93, 266–276 (2001)Google Scholar
  96. 96.
    Hogea, C.S., Murray, B.T., Sethian, J.A.: Simulating complex tumor dynamics from avascular to vascular growth using a general level-set method. J. Math. Biol.,53, 86–134 (2006)MATHMathSciNetGoogle Scholar
  97. 97.
    Holash, J., Maisonpierre, P.C., Compton, D., Boland, P., Alexander, C.R., Zagzag, D., Yancopoulos, G.D., Wiegand, S.J.: Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science,284, 1994–1998 (1999)Google Scholar
  98. 98.
    Holash, J., Wiegand, S.J., Yancopoulos, G.D.: New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene,18, 5356–5362 (1999)Google Scholar
  99. 99.
    Huang, Q., Shen, H.M., Ong, C.N.: Emodin inhibits tumor cell migration through suppression of the phosphatidylinositol 3-kinase-Cdc42/Rac1 pathway. Cell. Mol. Life Sci.,62, 1167–1175 (2005)Google Scholar
  100. 100.
    Jacqmin, D.: Calculation of two-phase Navier-Stokes flows using phase-field modeling. J. Comput. Phys.,155, 96–127 (1999)MATHMathSciNetGoogle Scholar
  101. 101.
    Jain, R.K.: Determinants of tumor blood flow: a review. Cancer Res.,48, 2641–2658 (1988)Google Scholar
  102. 102.
    Jain, R.K.: Physiological Barriers to Delivery of Monoclonal Antibodies and Other Macromolecules in Tumors. Cancer Res. (Suppl.),50, 814s-819s (1990)Google Scholar
  103. 103.
    Jain, R.K: Delivery of molecular and cellular medicine to solid tumors. J. Control. Release,53, 49–67 (1998)Google Scholar
  104. 104.
    Jain, R.K.: Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med.,7, 987–989 (2001)Google Scholar
  105. 105.
    Jain, R.K.: Delivery of molecular medicine to solid tumors: lessons from in vivo imaging of gene expression and function. J. Control. Release,74, 7–25 (2001)Google Scholar
  106. 106.
    Jain, R.K.: Molecular regulation of vessel maturation. Nature Med.,9, 685–693 (2003)Google Scholar
  107. 107.
    Jones, A.F., Byrne, H.M., Gibson, J.S., Dold, J.W.: A mathematical model of the stress induced during avascular tumor growth. J. Math. Biol.,40, 473–499 (2000)MATHMathSciNetGoogle Scholar
  108. 108.
    Kansal, A.A., Torquato, S., Harsh IV, G.R., Chiocca, E.A., Deisboeck, T.S.: Simulated brain tumor growth dynamics using a 3-D cellular automaton. J. Theor. Biol.,203, 367–382 (2000)Google Scholar
  109. 109.
    Kaur, B., Khwaja, F.W., Severson, E.A., Matheny, S.L., Brat, D.J., VanMeir, E.G.: Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro-oncol.,7, 134–153 (2005)Google Scholar
  110. 110.
    Keller, P.J., Pampaloni, F., Stelzer, E.H.K.: Life sciences require the third dimension. Curr. Op. Cell Biol.,18, 117–124 (2006)Google Scholar
  111. 111.
    Kim, J.S., Kang, K., Lowengrub, J.S.: Conservative multigrid methods for Cahn-Hilliard fluids. J. Comp. Phys.,193, 511–543 (2004)MATHMathSciNetGoogle Scholar
  112. 112.
    Kim, J.S., Kang, K., Lowengrub, J.S.: Conservative multigrid methods for ternary Cahn-Hilliard systems. Comm. Math. Sci.,12, 53–77 (2004)MathSciNetGoogle Scholar
  113. 113.
    Kim, J.S., Lowengrub, J.S.: Phase field modeling and simulation of three-phase flows. Int. Free Bound.,7, 435 (2005)MATHMathSciNetGoogle Scholar
  114. 114.
    Kloner, R.A., Jennings, R.B.: Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part 1. Circulation,104, 2981–2989 (2001)Google Scholar
  115. 115.
    Konopleva, M., Zhao, S.R., Hu, W., Jiang, S.W., Snell, V., Weidner, D., Jackson, C.E., Zhang, X., Champlin, R., Estey, E., Reed, J.C., Andreeff, M.: The anti-apoptotic genes Bcl-X-L and Bcl-2 are over-expressed and contribute to chemoresistance of non-proliferating leukaemic cells. Br. J. Haematol.,118, 521–534 (2002)Google Scholar
  116. 116.
    Kopfstein, L., Christofori, G.: Metastasis: cell-autonomous mechanisms versus contributions by the tumor microenvironment. Cell. Mol. Life Sci.,63, 449–468 (2006)Google Scholar
  117. 117.
    Kuiper, R.A.J., Schellens, J.H.M., Blijham, G.H., Beijnen, J.H., Voest, E.E.: Clinical research on antiangiogenic therapy. Pharmacol Res.,37, 1–16 (1998)Google Scholar
  118. 118.
    Kumar, M., Krishnan, G., Arumainanthan, U., Singh, K.: Endoscopic excision of a nasal glioma. The Internet Journal of Otorhinolaryngology,2 (2003)Google Scholar
  119. 119.
    Kunkel, P., Ulbricht, U., Bohlen, P., Brockmann, M.A., Fillbrandt, R., Stavrou, D., Westphal, M., Lamszus, K.: Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Res.,61, 6624–6628 (2001)Google Scholar
  120. 120.
    Lah, T.T., Alonso, M.B.D., Van Noorden, C.J.F.: Antiprotease therapy in cancer: hot or not? Exp. Op. Biol. Ther.,6, 257–279 (2006)Google Scholar
  121. 121.
    Lamszus, K., Kunkel, P., Westphal, M.: Invasion as limitation to antiangiogenic glioma therapy. Acta Neurochir. Suppl.,88, 169–177 (2003)Google Scholar
  122. 122.
    Lee, H., Lowengrub, J.S., Goodman, J.: Modeling pinchoff and reconnection in a Hele-Shaw cell I. The models and their calibration, Phys. Fluids,14, 492–513 (2002)MathSciNetGoogle Scholar
  123. 123.
    Leo, P.H., Lowengrub, J.S., Jou, H.-J.: A diffuse interface model for elastically stressed solids. Acta Metall.,46, 2113–2130 (1998)Google Scholar
  124. 124.
    Less, J.R., Skalak, T.C., Sevick, E.M., Jain, R.K.: Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions. Cancer Res.,51, 265–273 (1991)Google Scholar
  125. 125.
    Lester, R.D., Jo, M., Campana, W.M., Gonias, S.L.: Erythropoietin promotes MCF-7 breast cancer cell migration by an ERK/mitogenactivated protein kinase-dependent pathway and is primarily responsible for the increase in migration observed in hypoxia. J. Biol. Chem.,280, 39273–39277 (2005)Google Scholar
  126. 126.
    Li, X., Cristini, V., Nie, Q., Lowengrub, J.S.: Nonlinear three dimensional simulation of solid tumor growth. Disc. Cont. Dyn. Sys. B,7, 581–604 (2007)MATHMathSciNetGoogle Scholar
  127. 127.
    Lockett, J., Yin, S.P., Li, X.H., Meng, Y.H., Sheng, S.J.: Tumor suppressive maspin and epithelial homeostasis. J. Cell. Biochem.,97, 651–660 (2006)Google Scholar
  128. 128.
    Lowengrub, J.S., Macklin, P.: A centimeter-scale nonlinear model of tumor growth in complex, heterogeneous tissues. J. Math. Biol., (in preparation)Google Scholar
  129. 129.
    Lowengrub, J.S., Truskinovsky, L.: Quasi-incompressible Cahn-Hilliard fluids and topological transitions. Proc. R. Soc. London A,454, 2617–2654 (1998)MATHMathSciNetCrossRefGoogle Scholar
  130. 130.
    Lubarda, V., Hoger, A.: On the mechanics of solids with a growing mass. Int. J. Solids Structures,39, 4627 (2002)MATHGoogle Scholar
  131. 131.
    Macklin, P.: Numerical simulation of tumor growth and chemotherapy. MS thesis, University of Minnesota, Minnesota (2003)Google Scholar
  132. 132.
    Macklin, P., Lowengrub, J.S.: Evolving interfaces via gradients of geometrydependent interior Poisson problems: application to tumor growth. J. Comput. Phys.,203, 191–220 (2005)MATHMathSciNetGoogle Scholar
  133. 133.
    Macklin, P., Lowengrub, J.: An improved geometry-aware curvature discretization for level-set methods: application to tumor growth, J. Comput. Phys.,215, 392–401 (2006)MATHMathSciNetGoogle Scholar
  134. 134.
    Macklin, P., Lowengrub, J.: Nonlinear simulation of the effect of microenvironment on tumor growth. J. Theor. Biol.,245, 677–704 (2007)MathSciNetGoogle Scholar
  135. 135.
    Macklin, P., Lowengrub, J.: A new ghost cell/level set method for moving boundary problems: application to tumor growth. J. Scientific Comp., (in press) doi:10.1007/S10915-008-9190-ZGoogle Scholar
  136. 136.
    Maher, E., Furnari, F., Bachoo, R., Rowitch, D., Louis, D., Cavenee, W., De-Pinho, R.: Malignant glioma: genetics and biology of a grave matter. Genes Dev.,15, 1311 (2001)Google Scholar
  137. 137.
    Mallett, D.G., de Pillis, L.G.: A cellular automata model of tumorimmune system interactions. J. Theor. Biol.,239, 334–350 (2006)Google Scholar
  138. 138.
    Mansury, Y., Kimura, M., Lobo, J., Deisboeck, T.S.: Emerging patterns in tumor systems: simulating the dynamics of multicellular clusters with an agentbased spatial agglomeration model. J. Theor. Biol.,219, 343–370 (2002)MathSciNetGoogle Scholar
  139. 139.
    McDougall, S.R., Anderson, A.R.A., Chaplain, M.A.J.: Mathematical modeling of dynamic adaptive tumour-induced angiogenesis: clinical applications and therapeutic targeting strategies. J. Theor. Biol.,241, 564–589 (2006)MathSciNetGoogle Scholar
  140. 140.
    McDougall, S.R., Anderson, A.R.A., Chaplain, M.A.J., Sherratt, J.: Mathematical modelling of flow through vascular networks: implications for tumourinduced angiogenesis and chemotherapy strategies. Bull. Math. Biol.,64, 673– 702 (2002)Google Scholar
  141. 141.
    McElwain, D.L.S., Morris, L.E.: Apoptosis as a volume loss mechanism in mathematical models of solid tumor growth. Math. Biosci.,39, 147–157 (1978)Google Scholar
  142. 142.
    McLean, G.W., Carragher, N.O., Avizienyte, E., Evans, J., Brunton, V.G., Frame, M.C.: The role of focal-adhesion kinase in cancer. A new therapeutic opportunity. Nat. Rev. Cancer,5, 505–515 (2005)Google Scholar
  143. 143.
    Michieli, P., Basilico, C., Pennacchietti, S., Maffè, A., Tamagnone, L., Giordano, S., Bardelli, A., Comoglio, P.M.: Mutant Met mediated transformation is ligand-dependent and can be inhibited by HGF antagonists. Oncogene,18, 5221–5231 (1999)Google Scholar
  144. 144.
    Montesano, R., Matsumoto, K., Nakamura, T., Orci, L.: Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell,67, 901–908 (1991)Google Scholar
  145. 145.
    Morotti, A., Mila, S., Accornero, P., Tagliabue, E., Ponzetto, C.: K252a inhibits the oncogenic properties of Met, the HGF receptor. Oncogene,21, 4885–4893 (2002)Google Scholar
  146. 146.
    Mueller-Klieser, W.: Multicellular spheroids: a review on cellular aggregates in cancer research. J. Cancer Res. Clin. Oncol.,113, 101–122 (1987)Google Scholar
  147. 147.
    Naganuma, H., Kimurat, R., Sasaki, A., Fukamachi, A., Nukui, H., Tasaka, K.: Complete remission of recurrent glioblastoma multiforme following local infusions of lymphokine activated killer cells. Acta Neurochir.,99, 157–160 (1989)Google Scholar
  148. 148.
    Natarajan, M., Hecker, T.P., Gladson, C.L.: Fak signaling in anaplastic astrocytoma and glioblastoma tumors. Cancer J.,9, 126–133 (2003)Google Scholar
  149. 149.
    Netti, P.A., Baxter, L.T., Boucher, Y., Skalak, R., Jain, R.K.: Time dependent behavior of interstitial fluid pressure in solid tumors: implications for drug delivery. Cancer Res.,55, 5451–5458 (1995)Google Scholar
  150. 150.
    Nor, J.E., Christensen, J., Liu, J., Peters, M., Mooney, D.J., Strieter, R.M., Polverini, P.J.: Up-regulation of Bcl-2 in microvascular endothelial cells enhances intratumoral angiogenesis and accelerates tumor growth. Cancer Res.,61, 2183–2188 (2001)Google Scholar
  151. 151.
    O’Connor, J.P.B., Jackson, A., Parker, G.J.M., Jayson, G.C.: DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br. J. Cancer,96, 189–195 (2007)Google Scholar
  152. 152.
    Ommaya, A.K.: Mechanical properties of tissues of the nervous system. J. Biomechanics,1, 127–138 (1968).Google Scholar
  153. 153.
    Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulation. J. Comput. Phys.,79, 12 (1988)MATHMathSciNetGoogle Scholar
  154. 154.
    Padera, T.P., Stoll, B.R., Tooredman, J.B., Capen, D., di Tomaso, E., Jain, R.: Cancer cells compress intratumour vessels. Nature,427, 695 (2004)Google Scholar
  155. 155.
    Page, D.L., Anderson, T.J., Sakamoto, G: In: Diagnostic Histopathology of the Breast, Churchill Livingstone, Edinburgh, Scotland, 193–235 (1987)Google Scholar
  156. 156.
    Paku, S., Paweletz, N.: First step of tumor-related angiogenesis. Lab. Invest.,65, 334–346 (1991)Google Scholar
  157. 157.
    Patan, S., Tanda, S., Roberge, S., Jones, R.C., Jain, R.K., Munn, L.L.: Vascular morphogenesis and remodeling in a human tumor xenograft: blood vessel formation and growth after ovariectomy and tumor implantation. Circ. Research,89, 732–739 (2001)Google Scholar
  158. 158.
    Paweletz, N., Knierim, M.: Tumor-related angiogenesis. Crit. Rev. Oncol. Hematol.,9, 197–242 (1989)Google Scholar
  159. 159.
    Pennacchietti, S., Michieli, P., Galluzzo, M., Giordano, S., Comoglio, P.: Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell,3, 347–361 (2003)Google Scholar
  160. 160.
    Plank, M.J., Sleeman, B.D.: A reinforced random walk model of tumour angiogenesis and anti-angiogenic strategies. Math. Med. Biol.,20, 135–181 (2003)MATHGoogle Scholar
  161. 161.
    Plank, M.J., Sleeman, B.D.: Lattice and non-lattice models of tumour angiogenesis. Bull. Math. Biol.,66, 1785-1819 (2004)MathSciNetGoogle Scholar
  162. 162.
    Please, C.P., Pettet, G., McElwain, D.L.S.: A new approach to modeling the formation of necrotic regions in tumors. Appl. Math. Lett.,11, 89–94 (1998)MATHMathSciNetGoogle Scholar
  163. 163.
    Polette, M., Gilles, C., de Bentzmann, S., Gruenert, D., Tournier, J.M., Birembaut, P.: Association of fibroblastoid features with the invasive phenotype in human bronchial cancer cell lines. Clin. Exp. Metastasis,16, 105–112 (1998)Google Scholar
  164. 164.
    Postovit, L.M., Adams, M.A., Lash, G.E., Heaton, J.P., Graham, C.H.: Oxygen-mediated regulation of tumor cell invasiveness. Involvement of a nitric oxide signaling pathway. J. Biol. Chem.,277, 35730-35737 (2002)Google Scholar
  165. 165.
    Pouysségur, J., Dayan, F., Mazure, N.M.: Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature,441, 437–443 (2006)Google Scholar
  166. 166.
    Putz, E., Witter, K., Offner, S., Stosiek, P., Zippelius, A., Johnson, J., Zahn, R., Riethmüller, G., Pantel, K.: Phenotypic characteristics of cell lines derived from disseminated cancer cells in bone marrow of patients with solid epithelial tumors: establishment of working models for human micrometastases. Cancer Res.,59, 241–248 (1999)Google Scholar
  167. 167.
    Quaranta, V., Weaver, A.M., Cummings, P.T., Anderson, A.R.A.: Mathematical modeling of cancer: the future of prognosis and treatment. Clin. Chim. Acta,357, 173–179 (2005)Google Scholar
  168. 168.
    Ramakrishnan, S.: Department of Pharmacology, University of Minnesota. Personal communication (2003)Google Scholar
  169. 169.
    Ramanathan, A., Wang, C., Schreiber, S.L.: Perturbational profiling of a cellline model of tumorigenesis by using metabolic measurements. Proc. Natl Acad. Sci.,102, 5992–5997 (2005)Google Scholar
  170. 170.
    Ravandi, F., Estrov, Z.: Eradication of leukemia stem cells as a new goal of therapy in leukemia. Clin. Cancer Res.,12, 340–344 (2006)Google Scholar
  171. 171.
    Ridley, A.J., Schwartz, M.A., Burridge, K., Firtel, R.A., Ginsberg, M.H., Borisy, G., Parsons, J.T., Horwitz, A.R.: Cell migration: integrating signals from front to back. Science,302, 1704–1709 (2003)Google Scholar
  172. 172.
    Rofstad, E., Halsør, E.: Hypoxia-associated spontaneous pulmonary metastasis in human melanoma xenographs: involvement of microvascular hotspots induced in hypoxic foci by interleukin. Br. J. Cancer,86, 301–308 (2002)Google Scholar
  173. 173.
    Rofstad, E., Rasmussen, H., Galappathi, K., Mathiesen, B., Nilsen, K., Graff, B.A.: Hypoxia promotes lymph node metastasis in human melanoma xenografts by up-regulating the urokinase-type plasminogen activator receptor. Cancer Res.,62, 1847–1853 (2002)Google Scholar
  174. 174.
    Rohzin, J., Sameni, M., Ziegler, G., Sloane, B.F.: Pericellular pH affects distribution and secretion of cathepsin B in malignant cells. Cancer Res.,54, 6517-6525 (1994)Google Scholar
  175. 175.
    Roose, T., Netti, P.A., Munn, L.L., Boucher, Y., Jain, R.: Solid stress generated by spheroid growth estimated using a linear poroelastic model. Microvasc. Res.,66, 204–212 (2003)Google Scholar
  176. 176.
    Rubenstein, J.L., Kim, J., Ozawa, T., Zhang, K., Westphal, M., Deen, D.F., Shuman, M.A.: Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia,2, 306–314 (2000)Google Scholar
  177. 177.
    Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput.7, 856–869 (1986)MATHMathSciNetGoogle Scholar
  178. 178.
    Sahai, E.: Mechanisms of cancer cell invasion. Curr. Opin. Genet. Dev.,15, 87–96 (2005)Google Scholar
  179. 179.
    Sakamoto, G.: Infiltrating carcinoma: major histological types. In: Page, D.L., Anderson, T.J. (eds), Diagnostic Histopathology of the Breast. Churchill- Livingstone, London, UK (1987)Google Scholar
  180. 180.
    Sanga, S., Sinek, J.P., Frieboes, H.B., Fruehauf, J.P., Cristini, V.: Mathematical modeling of cancer progression and response to chemotherapy. Expert. Rev. Anticancer Ther.,6, 1361–1376 (2006)Google Scholar
  181. 181.
    Sanga, S., Frieboes, H.B., Zheng, X., Bearer, E.L., Cristini V.: Predictive oncology: a review of multidisciplinary, multiscale in silico modeling linking phenotype, morphology and growth. NeuroImage.,37, S120–S134 (2007)Google Scholar
  182. 182.
    Sanson, B.C., Delsanto, P.P., Magnano, M., Scalerandi, M.: Effects of anatomical constraints on tumor growth. Phys. Rev. E,64, 21903ff (2002)Google Scholar
  183. 183.
    Schmeichel, K.L., Weaver, V.M., Bissel, M.J.: Structural cues from the tissue microenvironment are essential determinants of the human mammary epithelial cell phenotype. J. Mammary Gland Biol. Neoplasia,3, 201–213 (1998)Google Scholar
  184. 184.
    Seftor, E.A., Meltzer, P.S., Kirshmann, D.A., Peér, J., Maniotis, A.J., Trent, J.M., Folberg, R., Hendrix, M.J.: Molecular determinants of human uveal melanoma invasion and metastasis. Clin. Exp. Metastasis,19, 233–246 (2002)Google Scholar
  185. 185.
    Shweiki, D., Itin, A., Soffer, D., Keshet, E.: Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature,359, 843–845 (1992)Google Scholar
  186. 186.
    Sierra, A.: Metastases and their microenvironments: linking pathogenesis and therapy. Drug Resistance Updates,8, 247–257 (2005)Google Scholar
  187. 187.
    Sinek, J., Frieboes, H., Zheng, X., Cristini, V.: Two-dimensional chemotherapy simulations demonstrate fundamental transport and tumor response limitations involving nanoparticles. Biomed. Microdev.,6, 197–309 (2004)Google Scholar
  188. 188.
    Skinner, S.A.: Microvascular architecture of experimental colon tumors in the rat. Cancer Res.,50, 2411–2417 (1990)Google Scholar
  189. 189.
    Steeg, P.S.: Angiogenesis inhibitors: motivators of metastasis? Nature Med.,9, 822–823 (2003)Google Scholar
  190. 190.
    Sun S., Wheeler, M.F., Obeyesekere, M., Patrick Jr., C.: Multiscale angiogenesis modeling using mixed finite element methods, Multiscale Model. Simul.,4, 1137–1167 (2005)MATHMathSciNetGoogle Scholar
  191. 191.
    Sutherland, R.M.: Cell and environment interactions in tumor microregions: the multicell spheroid model. Science,240, 177–184 (1988)Google Scholar
  192. 192.
    Takano, S., Yoshii, Y., Kondo, S., Suzuki, H., Maruno, T., Shirai, S., Nose, T.: Concentration of vascular endothelial growth factor in the serum and tumor tissue of brain tumor patients. Cancer Res.,56, 2185–2190 (1996)Google Scholar
  193. 193.
    Tester, A.M., Ruangpani, N., Anderso, R.L., Thompson, E.W.: MMP-9 secretion and MMP-2 activation distinguish invasive and metastatic sublines of a mouse mammary carcinoma system showing epithelial-mesenchymal transition traits. Clin. Exp. Metastasis,18, 553–560 (2000)Google Scholar
  194. 194.
    Tiller, W. Migration of a liquid zone through a solid. Part 3. J. Appl. Phys.,36, 261 (1965)Google Scholar
  195. 195.
    Truskey, G., Yuan, F., Katz, D.: Transport Phenomena in Biological Systems. Pearson Prentice-Hall, Upper Saddle River, NJ (2004)Google Scholar
  196. 196.
    Vajkoczy, P., Farhadi, M., Gaumann, A., Heidenreich, R., Erber, R., Wunder, A., Tonn, J.C., Menger, M.D., Breier, G.: Microtumor growth initiates angiogenic sprouting with simultaneous expression of VEGF, VEGF receptor-2, and angiopoietin-2. J. Clin. Invest.,109, 777–785 (2002)Google Scholar
  197. 197.
    van Kempen, L.C.L.T., Ruiter, D.J., van Muijen, G.N.P., Coussens, L.M.: The tumor microenvironment: a critical determinant of neoplastic evolution. Eur. J. Cell. Biol.,82, 539–548 (2003)Google Scholar
  198. 198.
    Vaupel, P., Haugland, H.K., Nicklee, T., Morrison, A.J., Hedley, D.W.: Hypoxia-inducible factor-1 alpha is an intrinsic marker for hypoxia in cervical cancer xenografts. Cancer Res.,61, 7394–7398 (2001)Google Scholar
  199. 199.
    Vaupel, P., Kallinowski, F., Okunieff, P.: Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumours: a review. Cancer Res.,49, 6449–6465 (1989)Google Scholar
  200. 200.
    Wise, S.M., Kim, J., Lowengrub, J.: Solving the regularized, strongly anisotropic Cahn-Hilliard equation by an adaptive nonlinear multigrid method. J. Comput. Phys.,226, 414–446 (2007)MATHMathSciNetGoogle Scholar
  201. 201.
    Wise, S.M., Lowengrub, J.S., Frieboes, H.B., Cristini, V.: Three dimensional multispecies nonlinear tumor growth-I: Model and numerical method. J. Theor. Biol., (in press)Google Scholar
  202. 202.
    Wise, S.M., Lowengrub, J.S., Kim, J.S., Johnson, W.C.: Efficient phase-field simulation of quantum dot formation in a strained heteroepitaxial film. Superlattices and Microstructures,36, 293–304 (2004)Google Scholar
  203. 203.
    Wolf, K., Friedl, P.: Molecular mechanisms of cancer cell invasion and plasticity. Br. J. Dermatology,154, 11–15 (2006)Google Scholar
  204. 204.
    Wurzel, M., Schaller, C., Simon, M., Deutsch, A.: Cancer cell invasion of brain tissue: guided by a prepattern? J. Theor. Medicine,6, 21–31 (2005)MATHMathSciNetGoogle Scholar
  205. 205.
    Yamaguchi, H., Wyckoff, J., Condeelis, J.: Cell migration in tumors. Curr. Op. Cell Biol.,17, 559–564 (2005)Google Scholar
  206. 206.
    Yin, S.P., Lockett, J., Meng, Y.H., Biliran, H., Blouse, G.E., Li, X.H., Reddy, N., Zhao, Z.M., Lin, X.L., Anagli, J., Cher, M.L., Sheng, S.J.: Maspin retards cell detachment via a novel interaction with the urokinase-type plasminogen activator/urokinase-type plasminogen activator receptor system. Cancer Res.,66, 4173–4181 (2006)Google Scholar
  207. 207.
    Young, S.D., Hill, R.P.: Effects of reoxygenation of cells from hypoxic regions of solid tumors: anticancer drug sensitivity and metastatic potential. J. Natl. Cancer Inst.,82, 338–339 (1990)Google Scholar
  208. 208.
    Young, S.D., Marshall, R.S., Hill, R.P.: Hypoxia induces DNA overreplication and enhances metastatic potential of murine tumor cells. Proc. Natl. Acad. Sci. USA, textbf85, 9533–9537 (1988)Google Scholar
  209. 209.
    Yu, J., Rak, J., Coomber, B., Hicklin, D., Kerbel, R.: Effect of p53 status on tumor response to antiangiogenic therapy. Science,295, 1526–1528 (2002)Google Scholar
  210. 210.
    Zagzag, D., Amirnovin, R., Greco, M.A., Yee, H., Holash, J., Wiegand, S.J., Zabski, S., Yancopoulos, G.D., Grumet, M.: Vascular apoptosis and involution in gliomas precede neovascularization: a novel concept for glioma growth and angiogenesis. Lab Invest.,80, 837–849 (2000)Google Scholar
  211. 211.
    Zheng, X., Wise, S.M., Cristini, V.: Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite element/level set method. Bull. Math. Biol.,67, 211–259 (2005)MathSciNetGoogle Scholar

Copyright information

© Birkhäuser Boston 2008

Authors and Affiliations

  • Vittorio Cristini
    • 1
    • 4
    • 5
  • Hermann B. Frieboes
    • 1
    • 2
  • Xiaongrong Li
    • 3
  • John S. Lowengrub
    • 2
    • 3
  • Paul Macklin
    • 1
  • Sandeep Sanga
    • 1
    • 4
  • Steven M. Wise
    • 2
  • Xiaoming Zheng
    • 2
  1. 1.School of Health Information Sciences University of Texas Health Science Center at HoustonUSA
  2. 2.Department of MathematicsUniversity of CaliforniaIrvineUSA
  3. 3.Department of Biomedical EngineeringUniversity of CaliforniaIrvine
  4. 4.Department of Biomedical EngineeringUniversity of TexasAustinUSA
  5. 5.MD Anderson Cancer CenterUniversity of TexasHoustonUSA

Personalised recommendations