Dynamically Adaptive Tumour Induced Angiogenesis The Impact of Flow on the Developing Capillary Plexus

  • Steven R. McDougall
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


Wall Shear Stress Capillary Network Parent Vessel Endothelial Cell Density Microvascular Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adam, J.A. (1986) A simplified mathematical model of tumour growth.Math. Biosc. 81, 229–244.MATHCrossRefGoogle Scholar
  2. 2.
    Alarcon, T., H. Byrne, and P. Maini (2003) A cellular automaton model for tumour growth in inhomogeneous environment.J. Theor. Biol. 225(15.2), 257– 274.CrossRefMathSciNetGoogle Scholar
  3. 3.
    Anderson, A.R.A., B.D.S. Sleeman, I.M. Young, and B.S. Griffiths (1997) Nematode movement along a chemical gradient in a structurally heterogeneous environment: II Theory.Fundam. Appl. Nematol. 20, 165–172.Google Scholar
  4. 4.
    Anderson, A.R.A., and M.A.J. Chaplain (1998) Continuous and discrete mathematical models of tumor-induced angiogenesis.Bull. Math. Biol. 60, 857–899.MATHCrossRefGoogle Scholar
  5. 5.
    Ausprunk, D.H., and J. Folkman (1977) Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumour angiogenesis.Microvasc. Res.14, 53–65.CrossRefGoogle Scholar
  6. 6.
    Baish, J.W., Y. Gazit, D.A. Berk, M. Nozue, L.T. Baxter, and R.K. Jain (1996) Role of tumor vascular architecture in nutrient and drug delivery: an invasion percolation-based network model.Microvasc. Res. 51, 327–346.CrossRefGoogle Scholar
  7. 7.
    Baish, J.W., P.A. Netti, and R.K. Jain (1997) Transmural coupling of fluid flow in microcirculatory network and interstitium in tumours.Microvasc. Res. 53, 128–141.CrossRefGoogle Scholar
  8. 8.
    Bray, D. (1992)Cell Movements, Garland Publishing, New York.Google Scholar
  9. 9.
    Benjamin, L.E., I. Hemo, and E. Keshet (1998) A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF.Development 125, 1591–1598.Google Scholar
  10. 10.
    Breward, C.J.W., H.M. Byrne, and C.E. Lewis (2003) A multiphase model describing vascular tumour growth.Bull. Math. Biol. 65, 609–640.CrossRefGoogle Scholar
  11. 11.
    Chaplain, M.A.J., and G. Lolas (2005) Mathematical modelling of cancer cell invasion of tissue: the role of the urokinase plasminogen activation system.Math. Modell. Methods. Appl. Sci. 15, 1685–1734.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Chatzis, I., and F.A.L. Dullien (1977) Modelling pore structure by 2D and 3D networks with application to sandstone.J. Can. Pet. Technol. 16, 97.Google Scholar
  13. 13.
    Ciofalo, M., M.W. Collins, and T.R. Hennessy (1999) Microhydrodynamics phenomena in the circulation, in Nanoscale Fluid Dynamics in Physiological Processes, A Review Study. WIT Press, Southampton, UK, 219–236.Google Scholar
  14. 14.
    Davis, G.E., K.A. Pintar Allen, R. Salazar, and S.A. Maxwell (2000) Matrix metalloproteinase-1 and –9 activation by plasmin regulates a novel endothelial cell-mediated mechanism of collagen gel contraction and capillary tube regression in three-dimensional collagen matrices.J. Cell Sci. 114, 917–930.Google Scholar
  15. 15.
    El-Kareh, A.W., and T.W. Secomb (1997) Theoretical models for drug delivery to solid tumours.Crit. Rev. Biomed. Eng.25(6), 503–571.Google Scholar
  16. 16.
    Folkman, J., and M. Klagsbrun (1987) Angiogenic factors.Science 235, 442– 447.CrossRefGoogle Scholar
  17. 17.
    Franks, S.J., H.M. Byrne, J.R. King, J.C.E. Underwood, and C.E. Lewis (2005) Biological inferences from a mathematical model of comedo ductal carcinoma in situ of the breast.J. Theor. Biol. 232(15.4), 523–543.CrossRefGoogle Scholar
  18. 18.
    Fung, Y.C. (1993)Biomechanics. Springer-Verlag, New York.Google Scholar
  19. 19.
    Gatenby, R.A., and E.T. Gawlinski (2003) The glycolytic phenotype in carcinogenesis and tumour invasion. Insights through mathematical modelling.Cancer Res.63, 3847–3854.Google Scholar
  20. 20.
    Gimbrone, M.A., R.S. Cotran, S.B. Leapman, and J. Folkman (1974) Tumor growth and neovascularization: an experimental model using the rabbit cornea.J. Natl. Cancer Inst.52, 413–427.Google Scholar
  21. 21.
    Glass, L. (1973) Instability and mitotic patterns in tissue growth.J. Dyn. Syst. Meas. Control. 95, 324–327.Google Scholar
  22. 22.
    Gödde, R., and H. Kurz (2001) Structural and biophysical simulation of angiogenesis and vascular remodeling,Developmental Dynamics 220, 387–401.CrossRefGoogle Scholar
  23. 23.
    Gottlieb, M.E. (1990) Modelling blood vessels: a deterministic method with fractal structure based on physiological rules.Proc 12 th Int Conf of IEEE EMBS, 1386–1387, IEEE Press, New York.Google Scholar
  24. 24.
    Greenspan, H.P. (1972) Models for the growth of a solid tumour by diffusion.Stud. Appl. Math. 52, 317–340.Google Scholar
  25. 25.
    Greenspan, H.P. (1976). On the growth and stability of cell cultures and solid tumours.J. Theor. Biol. 56, 229–242.CrossRefMathSciNetGoogle Scholar
  26. 26.
    Gruionu, G., J.B. Hoyling, A.R. Pries, and T.W. Secomb (2005) Structural remodelling of mouse gracilis artery after chronic alteration in blood supply.Am. J. Physiol. Heart. Circ. Physiol. 288, 2047–2054.CrossRefGoogle Scholar
  27. 27.
    Hidalgo, M., and S.G. Eckkhardt (2001) Development of matrix metalloproteinase inhibitors in cancer therapy.J. Natl. Cancer Inst. 93, 178–193.CrossRefGoogle Scholar
  28. 28.
    Honda, H., and K. Yoshizato (1997) Formation of the branching pattern of blood vessels in the wall of the avian yolk sac studied by a computer simulation.Develop. Growth Differ.39, 581–589.CrossRefGoogle Scholar
  29. 29.
    Jackson, T.L. (2002) Vascular tumour growth and treatment: consequences of polyclonality, competition and dynamic vascular support.J. Math. Biol. 44, 201–226.MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Kamiya, A., R. Bukhari, and T. Togawa (1984) Adaptive regulation of wall shear stress optimizing vascular tree function.Bull. Math. Biol. 46, 127–137.Google Scholar
  31. 31.
    Krenz, G.S., and C.A. Dawson (2002) Vessel distensibility and flow distribution in vascular trees.J. Math. Biol. 44, 360–374.MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Lankelma, J., R.F. Luque, H. Dekker, W. Shinkel, and H.M. Pinedao (2000) A mathematical model of drug transport in human breast cancer.Microvasc. Res. 59, 149–161.CrossRefGoogle Scholar
  33. 33.
    Serve, A.W., and K. Hellmann (1972) Metastases and normalization of tumor blood-vessels by icrf 159—new type of drug action.Br. Med. J. 1, 597– 601.CrossRefGoogle Scholar
  34. 34.
    Levine, H.A., S. Pamuk, B.D. Sleeman, and M. Nielsen-Hamilton (2001) Mathematical modeling of the capillary formation and development in tumor angiogenesis: penetration into the stroma,Bull. Math. Biol. 63(15.5), 801–863.CrossRefGoogle Scholar
  35. 35.
    35. Lolas, G. (2003) Mathematical modelling of the urokinase plasminogen activator system and its role in cancer invasion of tissue. PhD Thesis, University of Dundee.Google Scholar
  36. 36.
    McDougall, S.R., and K. Sorbie (1997) The application of network modelling techniques to multiphase flow in porous media.Petroleum Geosci.3, 161–169.Google Scholar
  37. 37.
    McDougall, S.R., A.R.A. Anderson, M.A.J. Chaplain, and J.A. Sherratt (2002) Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies.Bull. Math. Biol.64(15.4), 673–702.CrossRefGoogle Scholar
  38. 38.
    McDougall, S.R., A.R.A. Anderson, and M.A.J. Chaplain (2006) Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies.J. Theor. Biol. 241, 564–589.CrossRefMathSciNetGoogle Scholar
  39. 39.
    McElwain, D.L.S., and G.J. Pettet (1993) Cell migration in multicell spheroids: swimming against the tide.Bull. Math. Biol. 55, 655–674.MATHGoogle Scholar
  40. 40.
    Madri, J.A., and B.M. Pratt (1986) Endothelial cell-matrix interactions: in vitro models of angiogenesis.J. Histochem. Cytochem. 34, 85–91.Google Scholar
  41. 41.
    Mohanty, K.K., and S.J. Salter (1982) Multiphase flow in porous media: II Pore-level modelling. SPE 11018 presented at the 57th Annual Conference of the SPE, New Orleans, Louisiana.Google Scholar
  42. 42.
    Mollica, F., R.K. Jain, and P.A. Netti (2003) A model for temporal heterogeneities of tumour blood flow.Microvasc. Res.65, 56–60.CrossRefGoogle Scholar
  43. 43.
    Morikawa, S., P. Baluk, T. Kaidoh, et al. (2002) Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors.Am. J. Pathol. 160, 985–1000.Google Scholar
  44. 44.
    Muthukkaruppan, V.R., L. Kubai, and R. Auerbach (1982) Tumor-induced neovascularization in the mouse eye.J. Natl. Cancer Inst.69, 699–705.Google Scholar
  45. 45.
    Nekka, F., S. Kyriacos, C. Kerrigan, and L. Cartilier (1996) A model for growing vascular structures.Bull. Math. Biol. 58(15.3), 409–424.MATHCrossRefGoogle Scholar
  46. 46.
    Netti, P.A., S. Roberge, Y. Boucher, L.T. Baxter, and R.K. Jain (1996) Effect of transvascular fluid exchange on pressure-flow relationship in tumours: a proposed mechanism for tumour blood flow heterogeneity.Microvasc. Res.52, 27–46.CrossRefGoogle Scholar
  47. 47.
    Othmer, H., and A. Stevens (1997) Aggregation, blowup and collapse. The ABCs of taxis and reinforced random walks.SIAM. J. Appl. Math. 57, 1044–1081.MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Paweletz, N., and M. Knierim (1989) Tumor-related angiogenesis.Crit. Rev. Oncol. Hematol. 9, 197–242.CrossRefGoogle Scholar
  49. 49.
    Piri, M., and M.J. Blunt (2005a) Three-dimensional mixed-wet random porescale network modeling of two- and three-phase flow in porous media. I. Model description.Phys. Rev. E. 71, 026301.CrossRefGoogle Scholar
  50. 50.
    Piri, M., and M.J. Blunt (2005b) Three-dimensional mixed-wet random porescale network modeling of two- and three-phase flow in porous media. II. Results.Phys. Rev. E. 71, 026302.CrossRefGoogle Scholar
  51. 51.
    Plank, M.J., and B.D.S. Sleeman (2004) Lattice and non-lattice models of tumour angiogenesis.Bull. Math. Biol. 66(6), 1785–1819.CrossRefMathSciNetGoogle Scholar
  52. 52.
    Please, C.P., G.J. Pettet, and D.L.S. McElwain (1998) A new approach to modelling the formation of necrotic regions in tumours.Appl. Math. Lett. 11, 89–94.MATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    Popel, A.S., and P.C. Johnson (2005) Microcirculation and haemorheology.Ann. Rev. Fluid Mech. 37, 43–69.CrossRefMathSciNetGoogle Scholar
  54. 54.
    Preziosi, L., and A. Farina (2002) On Darcy’s law for growing porous media.Int. J. Non-linear Mechanics.37, 485–491.MATHCrossRefGoogle Scholar
  55. 55.
    Pries, A.R., T.W. Secomb, P. Gaehtgens, and J.F. Gross (1990) Blood flow in microvascular networks. Experiments and simulation.Circulation Res., 67, 826–834.Google Scholar
  56. 56.
    Pries, A.R., T.W. Secomb, and P. Gaehtgens (1996) Biophysical aspects of blood flow in the microvasculature.Cardiovasc. Res., 32, 654–667.Google Scholar
  57. 57.
    Pries, A.R., T.W. Secomb, and P. Gaehtgens (1998) Structural adaptation and stability of microvascular networks: theory and simulation.Am. J. Physiol. 275 (Heart Circ. Physiol. 44), H349–H360.Google Scholar
  58. 58.
    Pries, A.R., B. Reglin, and T.W. Secomb (2001a) Structural adaptation of microvascular networks: functional roles of adaptive responses.Am. J. Physiol. Heart Circ. Physiol. 281, H1015–H1025.Google Scholar
  59. 59.
    Pries, A.R., B. Reglin, and T.W. Secomb (2001b) Structural adaptation of vascular networks: role of the pressure response.Hypertension 38, 1476–1479.CrossRefGoogle Scholar
  60. 60.
    Pries, A.R., B. Reglin, and T.W. Secomb (2005) Remodelling of blood vessels: response of diameter and wall thickness to haemodynamic and metabolic stimuli.Hypertension 46, 725–731.CrossRefGoogle Scholar
  61. 61.
    Pries, A.R., and T.W. Secomb (2005) Control of blood vessel structure: insights from theoretical models.Am. J. Physiol. Heart Circ. Physiol. 288, 1010–1015.CrossRefGoogle Scholar
  62. 62.
    Pries, A.R., and T.W. Secomb (2005) Microvascular blood viscosity in vivo and the endothelial surface layer.Am. J. Physiol. Heart Circ. Physiol. 289, 2657–2664.CrossRefGoogle Scholar
  63. 63.
    Quarteroni, A., M. Tuveri, and A. Veneziani (2000) Computational vascular fluid dynamics: problems, models and methods.Comput. Visual. Sci. 2, 163– 197.MATHCrossRefGoogle Scholar
  64. 64.
    Ribba, B., K. Marron, Z. Agur, T. Alarcon, and P.K. Maini (2005) A mathematical model of Doxorubicin treatment efficacy for non-Hodgkin’s lymphoma.Bull. Math. Biol.67, 79–99.CrossRefMathSciNetGoogle Scholar
  65. 65.
    Salsbury, A.J., K. Burrage, and K. Hellmann (1970) Inhibition of metastatic spread by icrf159—selective deletion of a malignant characteristic.Br. Med. J. 4, 344–346.Google Scholar
  66. 66.
    Schmid-Schönbein, G.W. (1999) Biomechanics of microcirculatory blood perfusion.Ann. Rev. Biomed. Eng. 1, 73–102.CrossRefGoogle Scholar
  67. 67.
    Schoefl, G.I. (1963) Studies of inflammation III. Growing capillaries: their structure and permeability.Virchows Arch. Path. Anat.337, 97–141.CrossRefGoogle Scholar
  68. 68.
    68. Secomb, T.W. (1995) Mechanics of blood flow in the microcirculation.The Society for Experimental Biology, 305–321.Google Scholar
  69. 69.
    Sherratt, J.A. and M.A.J. Chaplain (2001) A new mathematical model for avascular tumour growth.J. Math. Biol. 43, 291–312.MATHCrossRefMathSciNetGoogle Scholar
  70. 70.
    Sholley, M.M., G.P. Ferguson, H.R. Seibel, J.L. Montour, and J.D. Wilson (1984) Mechanisms of neovascularization. Vascular sprouting can occur without proliferation of endothelial cells.Lab. Invest.51, 624–634.Google Scholar
  71. 71.
    Stéphanou, A., S.R. McDougall, A.R.A. Anderson, and M.A.J. Chaplain (2005) Mathematical modelling of flow in 2D and 3D vascular networks: applications to anti-angiogenic and chemotherapeutic drug strategies.Math. Comp. Model.41, 1137–1156.MATHCrossRefGoogle Scholar
  72. 72.
    Stéphanou, A., S.R. McDougall, A.R.A. Anderson, and M.A.J. Chaplain (2006) Mathematical modelling of the influence of blood rheological properties upon adaptive tumour-induced angiogenesis.Math. Comp. Model.44, 96–123.MATHCrossRefGoogle Scholar
  73. 73.
    Sternlicht, M.D., and Z. Werb (2001) How matrix metalloproteinases regulate cell behavior.Annu. Rev. Cell. Dev. Biol. 17, 463–516.CrossRefGoogle Scholar
  74. 74.
    Stokes, C.L., and D.A. Lauffenburger (1991) Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis.J. Theor. Biol.152, 377–403.CrossRefGoogle Scholar
  75. 75.
    Sun, S., M.F. Wheeler, M. Obeyesekere, and P.W. Charles (2005) A deterministic model of growth factor induced angiogenesis.Bull. Math. Biol. 67 (15.2), 313–337.CrossRefMathSciNetGoogle Scholar
  76. 76.
    Thomlinson, R.H., and L.H. Gray (1955) The histological structure of some human lung cancers and the possible implications for radiotherapy.Br. J. Cancer 9, 539–549.Google Scholar
  77. 77.
    Tong, S., and F. Yuan (2001) Numerical simulations of angiogenesis in the cornea.Microvasc. Res.61, 14–27.CrossRefGoogle Scholar
  78. 78.
    Ward, J.P., and J.R. King (1997) Mathematical modelling of avascular tumour growth.IMA J. Math. Appl. Med. Biol.14, 36–69.CrossRefGoogle Scholar
  79. 79.
    Ward, J.P., and J.R. King (1999) Mathematical modelling of avascular tumour growth. (ii) Modelling growth saturation.IMA J. Math. Appl. Med. Biol. 16, 171–211.MATHCrossRefGoogle Scholar
  80. 80.
    M.A. Moses, S. Huang, and D. Ingber (2000) Adhesion-dependent control of matrix metalloproteinase-2 activation in human capillary endothelial cells.J. Cell Sci. 113, 3979–3987.Google Scholar

Copyright information

© Birkhäuser Boston 2008

Authors and Affiliations

  1. 1.Institute of Petroleum EngineeringHeriot-Watt UniversityEdinburghScotland

Personalised recommendations