Methods of Stochastic Geometry and Related Statistical Problems in the Analysis and Therapy of Tumour Growth and Tumour Driven Angiogenesis

  • Vincenzo Capasso
  • Elisabetta Dejana
  • Alessandra Micheletti
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


Generalize Density Stochastic Method Angiogenic Process Stochastic Geometry Vessel Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ACV06]
    Ambrosio, L., Capasso, V., Villa, E.: On the approximation of geometric densities of random closed sets. RICAM Report N. 2006–14, Linz, Austria (2006).Google Scholar
  2. [AFP00]
    Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Clarendon Press, Oxford (2000).MATHGoogle Scholar
  3. [AC98]
    Anderson, A.R.A., Chaplain, M.: Continuous and discrete mathematical models of tumour-induced angiogenesis. Bull. Math. Biol.,60, 857–899 (1998).MATHCrossRefGoogle Scholar
  4. [AG80]
    Araujo, A., Ginè, E.: The Central Limit Theorem for Real and Banach Valued Random Variables. John Wiley – Sons, New York (1980).MATHGoogle Scholar
  5. [Avr39]
    Avrami, M.: Kinetics of phase change. Part I, J. Chem. Phys.,7, 1103–112 (1939).CrossRefGoogle Scholar
  6. [BM97]
    Baddeley, A.J., Molchanov, I.S.: On the expected measure of a random set. In: Proceedings of the International Symposium on Advances in Theory and Applications of Random Sets (Fontainebleau, 1996). World Sci. Publishing, River Edge, NJ, 3–20 (1997).Google Scholar
  7. [BDEP04]
    Bellomo, N., De Angelis, E., Preziosi L.: Multiscale modelling and mathematical problems related to tumour evolution and medical therapy. J. Theor. Med.,5, 111–136 (2004).CrossRefGoogle Scholar
  8. [BR04]
    Beneš, V., Rataj, J.: Stochastic Geometry. Kluwer, Dordrecht (2004).MATHGoogle Scholar
  9. [BBT80]
    Birdwell, C., Brasier, A., Taylor, L.: Two-dimensional peptide mapping of fibronectin from bovine aortic endothelial cells and bovine plasma. Biochem. Biophys. Res. Commun.,97, 574–581 (1980).CrossRefGoogle Scholar
  10. [Bosq00]
    Bosq, D.: Linear Processes in Function Spaces. Theory and Applications, Lecture Notes in Statistics,149, Springer-Verlag, New York (2000).Google Scholar
  11. [BCE99]
    Burger, M., Capasso, V., Engl, H.: Inverse problems related to crystallization of polymers. Inverse Problems,15, 155–173 (1999).MATHCrossRefMathSciNetGoogle Scholar
  12. [BCM04]
    Burger, M., Capasso, V., Micheletti, A.: Optimal control of polymer morphologies. Journal of Engineering Mathematics,49, 339–358 (2004).MATHCrossRefMathSciNetGoogle Scholar
  13. [BCP05]
    Burger, M., Capasso, V., Pizzocchero, L.: Mesoscale averaging of nucleation and growth models. Multiscale Modeling and Simulation: a SIAM Interdisciplinary Journal.5, 564–592 (2006).MATHCrossRefMathSciNetGoogle Scholar
  14. [BCS02]
    Burger, M., Capasso, V., Salani, C.: Modelling multi-dimensional crystallization of polymers in interaction with heat transfer. Nonlinear Analysis: Real World Application,3, 139–160 (2002).MATHCrossRefMathSciNetGoogle Scholar
  15. [Cap03]
    Capasso, V. (ed): Mathematical Modelling for Polymer Processing. Polymerization, Crystallization, Manufacturing. Mathematics in Industry, Vol. 2, Springer-Verlag, Heidelberg (2003).Google Scholar
  16. [CM06]
    Capasso, V., Micheletti, A.: Stochastic geometry and related statistical problems in Biomedicine. In: A. Quarteroni et al. (eds.) Complex Systems in Biomedicine. Springer, Milano, 36–69 (2006).Google Scholar
  17. [CM07]Capasso,
    [CM07]Capasso, V., Micheletti, A.: Kernel-like estimators of the mean density of inhomogeneous fibre processes. In preparation (2007).Google Scholar
  18. [CMo07]Capasso,
    [CMo07]Capasso, V., Morale, D.: Stochastic modelling of tumour-induced angiogenesis. Preprint (2007).Google Scholar
  19. [CV06a]
    Capasso, V., Villa, E.: Continuous and absolutely continuous random sets. Stoch. Anal. Appl.,24, 381–397 (2006a).MATHCrossRefMathSciNetGoogle Scholar
  20. [CV06b]Capasso,
    [CV06b]Capasso, V., Villa, E.: On the geometric densities of random closed sets. Stoch. Anal. Appl. 2007. In press.Google Scholar
  21. [CV07]
    Capasso, V., Villa, E.: On mean densities of inhomogeneous geometric processes arising in material science and medicine. Image Analysis and Stereology,26, 23–36 (2007).MATHMathSciNetGoogle Scholar
  22. [CA99]
    Chaplain, M.A.J., Anderson, A.R.A.: Modelling the growth and form of capillary networks. In: Chaplain, M.A.J. et al. (eds.) On Growth and Form. Spatio-temporal Pattern Formation in Biology. John Wiley – Sons, Chichester (1999).Google Scholar
  23. [CZD02]
    Corada, M., Zanetta, L., Orsenigo, F., Breviario, F., Lampugnani, M.G., Bernasconi, S., Liao, F., Hicklin, D.J., Bohlen, P., Dejana, E.: A monoclonal antibody to vascular endothelial-cadherin inhibits tumor angiogenesis without side effects on endothelial permeability. Blood.100, 905–911 (2002).CrossRefGoogle Scholar
  24. [CFD99]
    Crosby, C.V., Fleming, P., Zanetta, L., Corada, M., Giles, B., Dejana, E., Drake, C.: VE-cadherin is essential in the de novo genesis of blood vessels (vasculogenesis) in the allantoids. Blood,105, 2771–2776 (2005).CrossRefGoogle Scholar
  25. [Fal85]
    Falconer, K.J.: The Geometry of Fractal Sets. Cambridge University press, Cambridge (1985).MATHGoogle Scholar
  26. [Fed96]
    Federer, H.: Geometric Measure Theory. Springer, Berlin (1996).MATHGoogle Scholar
  27. [Folk74]
    Folkman, J.: Tumour angiogenesis. Adv. Canc. Res.,19, 331–358 (1974).CrossRefGoogle Scholar
  28. [FK87]
    Folkman, J., Klagsbrun, M.: Angiogenic factors. Sci.,235, 442–447 (1987).Google Scholar
  29. [GK06]
    Gabrial, A.S., Krasnow, M.A.: Social interactions among epithelial cells during tracheal branching morphogenesis. Nature,441, 746–749 (2006).CrossRefGoogle Scholar
  30. [Hahn99]
    Hahn, U., Micheletti, A., Pohlink, R., Stoyan, D., Wendrock, H.: Stereological analysis and modeling of gradient structures. J. of Microscopy,195, 113–124 (1999).CrossRefGoogle Scholar
  31. [Hard91]
    Hardle, W.: Smoothing Techniques. With Implementation in S, Springer-Verlag, New York (1991).Google Scholar
  32. [Harr06]Harrington,
    [Harr06]Harrington, H.A., et al.: A hybrid model for tumor-induced angiogenesis in the cornea in the presence of inhibitors (2006). Preprint.Google Scholar
  33. [JC01]
    Jain, R.K., Carmeliet, P.F.: Vessels of Death or Life. Scientific American285, 38–45 (2001).CrossRefGoogle Scholar
  34. [JM39]
    Johnson, W.A., Mehl, R.F.: Reaction kinetics in processes of nucleation and growth. Trans. A.I.M.M.E.,135, 416–458 (1939).Google Scholar
  35. [K37]
    Kolmogorov, A.N.: On the statistical theory of the crystallization of metals. Bull. Acad. Sci. USSR, Math. Ser.1, 355–359 (1937).Google Scholar
  36. [KF70]
    Kolmogorov, A.N., Fomin, S.V.: Introductory Real Analysis, Prentice-Hall, Englewood Cliffs, NJ, (1970).MATHGoogle Scholar
  37. [Lev01]
    Levine, H.A., Pamuk, S., Sleeman, B.D., Nilsen-Hamilton, M.: A mathematical model of capillary formation and development in tumour angiogenesis: penetration into the stroma. Bull. Math. Biol.,63, 801–863 (2001).CrossRefGoogle Scholar
  38. [Mat75]
    Matheron, G.: Random Sets and Integral Geometry. John Wiley – Sons, New York (1975).MATHGoogle Scholar
  39. [McDou06]
    McDougall, S.R., Anderson, A.R.A., Chaplain, M.A.J.: Mathematical modelling of dynamic tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J. Theor. Biology,241, 564–589 (2006).CrossRefMathSciNetGoogle Scholar
  40. [Mol92]
    Møller, J.: Random Johnson-Mehl tessellations. Adv. Appl. Prob.,24, 814–844 (1992).CrossRefGoogle Scholar
  41. [Mol94]
    Møller, J.: Lectures on Random Voronoi Tessellations. Lecture Notes in Statistics, Springer-Verlag, New York (1994).Google Scholar
  42. [MCO05]
    Morale, D., Capasso, V., Ölschlaeger, K.: An interacting particle system modelling aggregation behavior: from individuals to populations, J. Math. Bio.50, 49–66 (2005).MATHCrossRefGoogle Scholar
  43. [Oel89]
    Oelschläger, K.: On the derivation of reaction-diffusion equations as limit dynamics of systems of moderately interacting stochastic processes. Prob. Th. Rel. Fields.82, 565–586 (1989).MATHCrossRefGoogle Scholar
  44. [PK89]
    Paweletz, N., Kneirim, M.: Tumour related angiogenesis. Crit. Rev. Oncol. Haematol.,9, 197–242 (1989).CrossRefGoogle Scholar
  45. [Pest98]
    Pestman, W.R.: Mathematical Statistics. An Introduction, Walter de Gruyter, Berlin, (1998).MATHGoogle Scholar
  46. [PS03]
    Planck, M.J., and Sleeman, B.D.: A reinforced random walk model of tumour angiogenesis and anti-angiogenic strategies. Math Med Biology,20, 135–181 (2003).CrossRefGoogle Scholar
  47. [PA06]
    Preziosi, L., Astanin, S.: Modelling the formation of capillaries. In: A. Quarteroni et al.(eds.) Complex Systems in Biomedicine. Springer, Milano, 109–145 (2006).CrossRefGoogle Scholar
  48. [Ser03]
    Serini, G., et al.: Modeling the early stages of vascular network assembly. EMBO J.,22, 1771–1779 (2003).CrossRefGoogle Scholar
  49. [Silv86]
    Silverman, B.W.: Density Estimation for Statistics and Data Analysis, Chapman – Hall, London (1986).MATHGoogle Scholar
  50. [SKM95]
    Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and Its Application. John Wiley – Sons, New York (1995).Google Scholar
  51. [Sun05a]
    Sun, S., et al.: Nonlinear behaviors of capillary formation in a deterministic angiogenesis model. Nonlinear Analysis,63, e2237–e2246 (2005).MATHCrossRefGoogle Scholar
  52. [Sun05b]
    Sun, S., et al.: A multiscale angiogenesis modeling using mixed finite element methods. SIAM J. on Multiscale Model Simul.,4, 1137–1167 (2005).MATHCrossRefGoogle Scholar
  53. [TY01]
    Tong, S., and Yuan, F.: Numerical simulations of angiogenesis in the cornea. Microvascular Research,61, 14–27 (2001).CrossRefGoogle Scholar
  54. [Ubu03]
    Ubukata, T.: Computer modelling of microscopic features of molluscan shells. In: Sekimura, T. et al. (eds.) Morphogenesis and Pattern Formation in Biological Systems. Springer-Verlag, Tokyo, 355–368 (2003).Google Scholar
  55. [Zah82]
    Zäahle, M.: Random processes of Hausdorff rectifiable closed sets. Math. Nachr.,108, 49–72 (1982).CrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Boston 2008

Authors and Affiliations

  • Vincenzo Capasso
    • 1
  • Elisabetta Dejana
    • 2
    • 3
  • Alessandra Micheletti
    • 1
  1. 1.Dipartimento di MatematicaUniversità degli Studi di MilanoItaly
  2. 2.Dipartimento di Scienze Biomolecolari e BiotecnologieUniversità degli Studi di MilanoItaly
  3. 3.IFOM - Fondazione Istituto FIRC di Oncologia MolecolareItaly

Personalised recommendations