The Lymphatic Vascular System in Lymphangiogenesis Invasion and Metastasis A Mathematical Approach

Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


Vascular Endothelial Growth Factor Lymphatic Vessel Lymphatic System Lymphatic Endothelial Cell Urokinase Plasminogen Activator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J.D.: Molecular Biology of the Cell, Garland Publishing, New York (1994).Google Scholar
  2. 2.
    Alitalo, K., and Carmeliet, P.: Molecular mechanisms of lymphangiogenesis in health and disease,Cancer Cell, 1, 219–227 (2002).CrossRefGoogle Scholar
  3. 3.
    Anderson, A.R.A., and Chaplain, M.A.J.: Continuous and discrete mathematical models of tumor induced angiogenesis,Bulletin of Mathematical Biology,60, 857–899 (1998).MATHCrossRefGoogle Scholar
  4. 4.
    Andreasen, P.A., Kjøller, L., Christensen, L. and Duffy, M.J.: The urokinasetype plasminogen activator system in cancer metastasis: A review,International Journal of Cancer,72, 1–22 (1997).CrossRefGoogle Scholar
  5. 5.
    Andreasen, P.A., Egelund, R., and Petersen, H.H.: The plasminogen activation system in tumor growth, invasion, and metastasis,Cellular and Molecular Life Sciences,57, 25–40 (2000).CrossRefGoogle Scholar
  6. 6.
    Aznavoorian, S., Stracke, M.L., Krutzsch, H., Schiffmann, E., and Liotta, L.A.: Signal transduction for chemotaxis and haptotaxis by matrix molecules in tumor cells,Journal of Cell Biology,110, 1427–1438 (1990).CrossRefGoogle Scholar
  7. 7.
    Aznavoorian, S., Stracke, M.L., Persons, J., McClanahan, J., and Liotta, L.A.: Integrinα v β 3 mediates chemotactic and haptotactic motility in human melanoma cells through different signaling pathways,Journal of Biological Chemistry,271, 3247–3254 (1996).CrossRefGoogle Scholar
  8. 8.
    Bray, D.:Cell Movements from Molecules to Motility, Garland Publishing, New York (2000).Google Scholar
  9. 9.
    Carmeliet, P., and Jain, R.K.: Angiogenesis in cancer and other diseases,Nature,407, 249–257 (2000)CrossRefGoogle Scholar
  10. 10.
    Chang, L., Kaipainen, A., and Folkman, J.: Lymphangiogenesis new mechanisms,Annals New York Academy of Sciences,979, 111–119 (2002).CrossRefGoogle Scholar
  11. 11.
    Chaplain, M.A.J.: Avascular growth, angiogenesis and vascular growth in solid tumours: The mathematical modelling of the stages of tumour development,Mathematical and Computer Modelling,23, 47–87 (1996).MATHCrossRefGoogle Scholar
  12. 12.
    Chaplain, M.A.J.: Mathematical modelling of angiogenesis,Journal of Neuro-Oncology,50, 37–51 (2000).CrossRefGoogle Scholar
  13. 13.
    Chaplain, M.A.J., and Lolas, G.: Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system,Mathematical Models and Methods in Applied Sciences,15 (11), 1685–1734 (2005).MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Enholm, B., Paavonen, K., Ristimäki, A., Kumar, V., Gunji, Y., Klefstrom, J., Kivinen, L., Laiho, M., Olofsson, B., Joukov, V., Eriksson, U., and Alitalo, K.: Comparison of VEGF, VEGF-B, VEGF-C and Ang-1 mRNA regulation by serum, growth factors, oncoproteins and hypoxia,Oncogene,14, 2475–2483 (1997).CrossRefGoogle Scholar
  15. 15.
    Fidler, I.J.: Tumor heterogeneity and the biology of cancer invasion and metastasis,Cancer Research,38, 2651–2660 (1978).Google Scholar
  16. 16.
    Folkman, J.: Tumor angiogenesis: Therapeutic implications,New England Journal of Medicine,285, 1182–1186 (1971).Google Scholar
  17. 17.
    Folkman, J.: The vascularization of tumors,Scientific American,234, 58–73 (1976).CrossRefGoogle Scholar
  18. 18.
    Folkman, J.: Tumor angiogenesis, In:Cancer Medicine, Bast, R.C., Kufe, D.W., Pollock, R.E., Weichselbaum, R.R., Holland, J.F., Frei, E., and Gansler, T.S., editors, Decker, Ontario, Canada, 132–152 (2000).Google Scholar
  19. 19.
    Hanahan, D., and Weinberg, R.A.: The hallmarks of cancer,Cell,100, 57–70 (2000).CrossRefGoogle Scholar
  20. 20.
    Hong, Y-H., and Detmar, M.: Prox1, master regulator of the lymphatic vasculature phenotype,Cell – Tissue Research,314, 85–92 (2003).CrossRefGoogle Scholar
  21. 21.
    Jackson, D.G., Prevo, R., Clasper, S., and Banerji, S.: LYVE-1, the lymphatic system and tumor lymphangiogenesis,TRENDS in Immunology,22, 317–321 (2001).CrossRefGoogle Scholar
  22. 22.
    Ji, R-C.: Lymphatic endothelial cells, tumor lymphangiogenesis and metastasis: New insights into intratumoral and peritumoral lymphatics,Cancer Metastasis Reviews,25, 677–694 (2006).Google Scholar
  23. 23.
    Joukov, V., Pajusola, K., Kaipainen, A., Chilov, D., Lahtinen, I., Kukk, E., Saksela, O., Kalkkinen, N., and Alitalo, K.: A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases,The EMBO Journal,15, 1751 (1996).Google Scholar
  24. 24.
    Joukov, V., Sorsa, T., Kumar, V., Jeltsch, M., Claesson-Welsh, L., Cao, Y., Saksela, O., Kalkkinen, N., and Alitalo, K.: Proteolytic processing regulates receptor specificity and activity of VEGF-C,European Molecular Biology Organization Journal,16, 3898–3911 (1997).Google Scholar
  25. 25.
    Jussila, L.: Ph.D. Thesis: VEGFR-3 in angiogenesis and lymphangiogenesis, University of Helsinki, Finland (2001).Google Scholar
  26. 26.
    Jussila, L., and Alitalo, K.: Vascular growth factors and lymphangiogenesis,Physiological Reviews,82, 673–700 (2002).Google Scholar
  27. 27.
    Karkkainen, M.J., Mäkinen, T., and Alitalo, K.: Lymphatic endothelium: a new frontier of metastasis research,Nature Cell Biology,4, E2–E5 (2002).CrossRefGoogle Scholar
  28. 28.
    Karpanen, T., and Alitalo, K.: Lymphatic vessels as targets of tumor therapy,Journal of Experimental Medicine,194, F37–F42 (2001).CrossRefGoogle Scholar
  29. 29.
    Korpelainen, E.I., and Alitalo, K.: Signaling angiogenesis and lymphangiogenesis,Current Opinion in Cell Biology,10, 159–164 (1998).CrossRefGoogle Scholar
  30. 30.
    Levine, H.A., Sleeman, B.D., and Nilsen-Hamilton, M.: A mathematical model for the role of pericytes and macrophages in the initiation of angiogenesis: I. The role of protease inhibitors in preventing angiogenesis,Mathematical Biosciences,168, 77–115 (2000).MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Levine, H.A., Pamuk, S., Sleeman, B.D., and Nilsen-Hamilton, M.: Mathematical modeling of capillary formation and development in tumor angiogenesis: penetration into the stroma,Bulletin of Mathematical Biology,63, 801–863 (2001).CrossRefGoogle Scholar
  32. 32.
    Levine, H.A., Sleeman, B.D., and Nilsen-Hamilton, M.: Mathematical modeling of the onset of capillary formation initiating angiogenesis,Journal of Mathematical Biology,42, 195–238 (2001).MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Liotta, L.A., Steeg P.S., and Stetler-Stevenson W.G.: Cancer metastasis and angiogenesis: An imbalance of positive and negative regulation,Cell,64, 327– 336 (1991).CrossRefGoogle Scholar
  34. 34.
    Lolas, G.: Ph.D. Thesis: Mathematical modelling of the urokinase plasminogen activation system and its role in cancer invasion of tissue, University of Dundee, Scotland (2003).Google Scholar
  35. 35.
    Lolas, G., and Friedman, A.: Lymphangiogenesis in tumors: A mathematical model, submitted for publication, (2007).Google Scholar
  36. 36.
    Mäkinen, T., Veikkola, T., Mustjoki, S., Karpanen, T., Catimel, B., Nice, E.C., Wise, L., Mercer, A., Kowalski, H., Kerjaschki, D., Stacker, S.A., Achen, M.G., and Alitalo, K.: Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3,European Molecular Biology Organization Journal,20, 4762–4773 (2001).Google Scholar
  37. 37.
    Mandriota, S.J., Jussila, L., Jeltsch M., Compagni, A., Baetens, D., Prevo, R., Banerji, S., Huarte, J., Montesano, R., Jackson, D.G., Orci, L., Alitalo, K., Christofori, G., and Pepper, M.S.: Vascular endothelial growth factor-Cmediated lymphangiogenesis promotes tumour metastasis,European Molecular Biology Organization Journal,20, 672–682 (2001).Google Scholar
  38. 38.
    McCarthy, J.B., Palm, S.L., and Furcht, L.T.: Migration by haptotaxis of a schwann cell tumor line to the basement membrane glycoprotein lamini,Journal of Cell Biology,97, 772–777 (1983).CrossRefGoogle Scholar
  39. 39.
    McCarthy, J.B., and Furcht, L.T.: Laminin and fibronectin promote the haptotactic migration of B16 mouse melanoma cells in vitro,Journal of Cell Biology,98, 1474–1480 (1984).CrossRefGoogle Scholar
  40. 40.
    McCarthy, J.B., Hagen, S.T., and Furcht, L.T.: Human fibronectin contains distinct adhesion- and motility-promoting domains for metastatic melanoma cells,Journal of Cell Biology,102, 179–188 (1986).CrossRefGoogle Scholar
  41. 41.
    McColl, B.K., Baldwin, M.E., Roufail, S., Freeman, C., Moritz, R.L., Simpson, R.J., Alitalo, K., Stacker, S.A., and Achen, M.G.: Plasmin activates the lymphangiogenic growth factors VEGF-C and VEGF-D,The Journal of Experimental Medicine,198, 863–868 (2003).CrossRefGoogle Scholar
  42. 42.
    Nagy, J.A., Vasile, E., Feng, D., Sundberg, C., Brown, L.F., Detmar, M.J., Lawitts, J.A., Benjamin, L., Tan, X., Manseau, E.J., Dvorak, A.M., and Dvorak, H.F.: Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis,Journal of Experimental Medicine,196, 1497–1506 (2002).CrossRefGoogle Scholar
  43. 43.
    Oh, C.W., Hoover-Plow, J., and Plow, E.F.: The role of plasminogen in angiogenesisin vivo, Journal of Thrombosis and Haemostasis,1, 1683–1687 (2003).CrossRefGoogle Scholar
  44. 44.
    Oh, S-J., Jeltsch, M.M., Birkenhäger, R., McCarthy, J.E.G., Weich, H.A., Christ, B., Alitalo, K., and Wilting, J.: VEGF and VEGF-C: Specific Induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane,Developmental Biology,188, 96–109 (1997).CrossRefGoogle Scholar
  45. 45.
    Oliver, G.: Lymphatic vasculature development,Nature Reviews Immunology,4, 35–45 (2004).CrossRefMathSciNetGoogle Scholar
  46. 46.
    Oliver, G., and Detmar, M.: The rediscovery of the lymphatic system: Old and new insights into the development and biological function of the lymphatic vasculature,Genes – Development,16, 773–783 (2002).CrossRefGoogle Scholar
  47. 47.
    Orme, M.E., and Chaplain, M.A.J.: Two-dimensional models of tumour angiogenesis and anti-angiogenesis strategies,IMA Journal of Mathematics Applied in Medicine – Biology,14, 189–205 (1997).MATHCrossRefGoogle Scholar
  48. 48.
    Partanen, T.A., Arola, J., Saaristo, A., Jussila, L., Ora, A., Miettinen, M., Stacker, S.A., Achen, M.G., and Alitalo, K.: VEGF-C and VEGF-D expression in neuroendocrine cells and their receptor, VEGFR-3, in fenestrated blood vessels in human tissues,The FASEB Journal,14, 2087–2096 (2000).CrossRefGoogle Scholar
  49. 49.
    Partanen, T.A., and Paavonen, K.: Lymphatic versus blood vascular endothelial growth factors and receptors in humans,Microscopy Research and Technique,55, 108–121 (2001).CrossRefGoogle Scholar
  50. 50.
    Pepper, M.S.: Lymphangiogenesis and tumor metastasis: Myth or reality?,Clinical Cancer Research,7, 462–468 (2001).Google Scholar
  51. 51.
    Pepper, M.S., Ferrara, N., Orci, L., and Montesano, R.: Vascular endothelial growth factor (VEGF) induces plasminogen activators and plasminogen activator inhibitors-1 in microvascular endothelial cells,Biochemical and Biophysical Research Communications,189, 824–831 (1991).CrossRefGoogle Scholar
  52. 52.
    Pepper, M.S., Wasi, S., Ferrara, N., Orci, L., and Montesano, R.:In vitroangiogenic and proteolytic properties of bovine lymphatic endothelial cells,Experimental Cell Research,210, 298–305 (1994).CrossRefGoogle Scholar
  53. 53.
    Pepper, M.S., Mandriota, S.J., Jeltsch, M., Kumar, V., and Alitalo, K.: Vascular endothelial growth factor (VEGF)-C synergizes with basic fibroblast growth factor and VEGF in the induction of angiogenesis in vitro and alters endothelial cell extracellular proteolytic activity,Journal of Cellular Physiology,177, 439– 452 (1998).CrossRefGoogle Scholar
  54. 54.
    Pepper, M.S., and Skobe, M.: Lymphatic endothelium: Morphological, molecular and functional properties,Journal of Cell Biology,163, 209–213 (2003).CrossRefGoogle Scholar
  55. 55.
    Pepper, M.S., Tille, J-C., Nisato, R., and Skobe, M.: Lymphangiogenesis and tumor metastasis,Cell Tissue Research,314, 167–177 (2003).CrossRefGoogle Scholar
  56. 56.
    Plate, K.H.: From angiogenesis to lymphangiogenesis,Nature Medicine,7, 151– 152 (2001).CrossRefGoogle Scholar
  57. 57.
    Podgrabinska, S., Braun, P., Velasco, P., Kloos, B., Pepper, M.S., Jackson, D.G., and Skobe, M.: Molecular characterization of lymphatic endothelial cells,Proceedings of the National Academy of Sciences,99, 16069–16074 (2002).CrossRefGoogle Scholar
  58. 58.
    Rakic, J.M., Maillard, C., Jost, M., Bajou, K., Masson, V., Devy, L., Lambert, V., Foidart, J.M., and Nöel, A.: Role of plasminogen activator-plasmin system in tumor angiogenesis,Cellular and Molecular Life Sciences,60, 463–473 (2003).CrossRefGoogle Scholar
  59. 59.
    Reis-Filho, J.S., and Schmitt, F.C.: Lymphangiogenesis in tumors: What do we know?,Microscopy Research and Technique,60, 171–180 (2003).CrossRefGoogle Scholar
  60. 60.
    Ristimäaki, A., Narko, K., Enholm, B., Joukov, V., and Alitalo, K.: Proinflammatory cytokines regulate expression of the lymphatic endothelial mitogen vascular endothelial growth factor-C,The Journal of Biological Chemistry, 8413–8418 (1998).Google Scholar
  61. 61.
    Ruoslahti, E.: How cancer spreads,Scientific American,275, 72–77 (1996).CrossRefGoogle Scholar
  62. 62.
    Schoppmann, S.F., Birner, P., Stöckl, J., Kalt, R., Ullrich, R., Caucig, C., Kriehuber, E., Nagy, K., Alitalo, K., and Kerjaschki, D.: Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis,American Journal of Pathology,161, 947–956 (2002).Google Scholar
  63. 63.
    Shayan, R., Achen, M.G., and Stacker, S.A.: Lymphatic vessels in cancer metastasis: Bridging the gaps,Carcinogenesis,27, 1729–1738 (2006).CrossRefGoogle Scholar
  64. 64.
    Sidenius, N., and Blasi, F.: The urokinase plasminogen activator system in cancer: Recent advances and implication for prognosis and therapy,Cancer and Metastasis Reviews,22, 205–222 (2003).CrossRefGoogle Scholar
  65. 65.
    Skobe, M., Hamberg, L.M., Hawighorst, T., Schirner, M., Wolf, G.L., Alitalo, K., and Detmar, M.: Concurrent induction of lymphangiogenesis, angiogenesis, and macrophage recruitment by vascular endothelial growth factor-C in melanoma,Americal Journal of Pathology,159, 893–903 (2001a).Google Scholar
  66. 66.
    Skobe, M., Hawighorst, T., Jackson, D.G., Prevo, R., Janes, L., Velasco, P., Riccardi, L., Alitalo, K., Claffey, K., and Detmar, M.: Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis,Nature Medicine,7, 192–198 (2001b).CrossRefGoogle Scholar
  67. 67.
    Sleeman, J.P.: The lymph node as a bridgehead in the metastatic dissemination of tumors, in: Schlag P.M., Veronesi U. (Eds.),Lymphatic Metastasis and Sentinel Lymphonodectomy, Springer, New York, 55–81 (2000).Google Scholar
  68. 68.
    Stacker, S.A., Stenvers, K., Caesar, C., Vitali, A., Domagala, T., Nice, E., Roufail, S., Simpson, R.J., Moritz, R., Karpanen, T., Alitalo, K., and Achen, M.G.: Biosynthesis of vascular endothelial growth factor-D involves proteolytic processing which generates non-covalent homodimers,Journal of Biological Chemistry,274, 32127–32136 (1999).CrossRefGoogle Scholar
  69. 69.
    Stacker, S.A., Achen, M.G., Jussila, L., Baldwin, M.E., and Alitalo, K.: Lymphangiogenesis and cancer metastasis,Nature Reviews,2, 573–583 (2002a).CrossRefGoogle Scholar
  70. 70.
    Stacker, S.A., Baldwin, M.E., and Achen, M.G.: The role of tumor lymphangiogenesis in metastatic spread,The FASEB Journal,16, 922–934 (2002b).CrossRefGoogle Scholar
  71. 71.
    Swartz, M.A., and Skobe, M.: Lymphatic function, lymphangiogenesis, and cancer metastasis,Microscopy Research and Technique,55, 92–99 (2001).CrossRefGoogle Scholar
  72. 72.
    Taraboletti, G., Roberts, D.D., and Liotta, L.A.: Thrombospondin-induced tumor cell migration: Haptotaxis and chemotaxis are mediated by different molecular domains,Journal of Cell Biology,105, 2409–2415 (1987).CrossRefGoogle Scholar
  73. 73.
    Tille, J-C., Wang, X., Lipson, K.E., McMahon, G., Ferrara, N., Zhu, Z., Hicklin, D.J., Sleeman, J.P., Eriksson, U., Alitalo, K., and Pepper, M.S.: Vascular endothelial growth factor (VEGF) receptor-2 signaling mediatesVEGF-C ΔNΔC and VEGF-A-induced angiogenesis in vitro, Experimental Cell Research,285, 286–298 (2003).Google Scholar
  74. 74.
    Valtola, R., Salven, P., Heikkilä, P., Taipale, J., Joensuu, H., Rehn, M., Pihlajaniemi, T., Weich, H., deWaal, R., and Alitalo, K.: VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer,American Journal of Pathology,154, 1381–1390 (1999).Google Scholar

Copyright information

© Birkhäuser Boston 2008

Authors and Affiliations

  1. 1.Department of Immunology, Faculty of Health SciencesUniversity of Pretoria, and Netcare Institute of Cellular and Molecular MedicineLifestyle Management Park, 223 Clifton AvenueSouth Africa
  2. 2.Department of MathematicsTechnological and Educational Institute of Athens Ag. Spyridonos12210 AigaleoGreece

Personalised recommendations