Advertisement

Evaluating Floating-Point Elementary Functions

  • Jean-Michel Muller
  • Nicolas Brisebarre
  • Florent de Dinechin
  • Claude-Pierre Jeannerod
  • Vincent Lefèvre
  • Guillaume Melquiond
  • Nathalie Revol
  • Damien Stehlé
  • Serge Torres
Chapter

Abstract

The elementary functions are the most common mathematical functions: sine, cosine, tangent and their inverses, exponentials and logarithms of radices e, 2 or 10, etc. They appear everywhere in scientific computing; thus being able to evaluate them quickly and accurately is important for many applications. Various very different methods have been used for evaluating them: polynomial or rational approximations, shift-and-add algorithms, table-based methods, etc. The choice of the method greatly depends on whether the function will be implemented on hardware or software, on the target precision (for instance, table-based methods are very good for low precision, but unrealistic for very high precision), and on the required performance (in terms of speed, accuracy, memory consumption, size of code, etc.). With regard to performance, one will also resort to different methods depending on whether one wishes to optimize average performance or worst-case performance.

Keywords

Orthogonal Polynomial Elementary Function Polynomial Approximation Input Argument Range Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Birkhäuser Boston 2010

Authors and Affiliations

  • Jean-Michel Muller
    • 1
  • Nicolas Brisebarre
    • 1
  • Florent de Dinechin
    • 2
  • Claude-Pierre Jeannerod
    • 3
  • Vincent Lefèvre
    • 3
  • Guillaume Melquiond
    • 4
  • Nathalie Revol
    • 3
  • Damien Stehlé
    • 5
  • Serge Torres
    • 2
  1. 1.CNRS, Laboratoire LIPÉcole Normale Supérieure de LyonLyon Cedex 07France
  2. 2.ENSL, Laboratoire LIPÉcole Normale Supérieure de LyonLyon Cedex 07France
  3. 3.INRIA, Laboratoire LIPÉcole Normale Supérieure de LyonLyon Cedex 07France
  4. 4.INRIA Saclay – Île-de- FranceParc Orsay UniversitéOrsay CedexFrance
  5. 5.CNRSMacquarie University, and University of Sydney School of Mathematics and Statistics University of SydneySydneyAustralia

Personalised recommendations