Skip to main content

Cherednik Algebras for Algebraic Curves

  • Chapter
  • First Online:
Representation Theory of Algebraic Groups and Quantum Groups

Part of the book series: Progress in Mathematics ((PM,volume 284))

Abstract

To George Lusztig with admirationFor any algebraic curve C and n≥1, Etingof introduced a “global” Cherednik algebra as a natural deformation of the cross product \(\mathcal{D}({C}^{n}) \rtimes {\mathbb{S}}_{n}\) of the algebra of differential operators on C n and the symmetric group. We provide a construction of the global Cherednik algebra in terms of quantum Hamiltonian reduction. We study a category of character \(\mathcal{D}\) -modules on a representation scheme associated with C and define a Hamiltonian reduction functor from that category to category \(\mathcal{O}\) for the global Cherednik algebra. In the special case of the curve \(C = {\mathbb{C}}^{\times }\), the global Cherednik algebra reduces to the trigonometric Cherednik algebra of type A n−1,and our character \(\mathcal{D}\)-modules become holonomic \(\mathcal{D}\)-modules on \(G{L}_{n}(\mathbb{C}) \times {\mathbb{C}}^{n}\). The corresponding perverse sheaves are reminiscent of (and include as special cases) Lusztig’s character sheaves.

Mathematics Subject Classifications (2000): 20Gxx (20C08)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Achar, A. Henderson, Orbit closures in the enhanced nilpotent cone, Preprint 2007, arXiv:0712.1079

    Google Scholar 

  2. T.Arakawa, T.Suzuki, A.Tsuchiya, Degenerate double affine Hecke algebra and conformal field theory, Progr. Math. 160 (1998), 1–34

    MathSciNet  Google Scholar 

  3. A.Beilinson, J.Bernstein, A proof of Jantzen conjectures. I. M. Gelfand Seminar, 1–50, Adv. Soviet Math., 16, Part 1, Amer. Math. Soc., Providence, RI, 1993

    Google Scholar 

  4. R.Bezrukavnikov, P.Etingof, Parabolic induction and restriction functors for rational Cherednik algebras, Preprint 2008, arXiv:0803.3639

    Google Scholar 

  5. D. Calaque, B. Enriquez, P. Etingof, Universal KZB equations I: the elliptic case, arXiv:math.QA/0702670

    Google Scholar 

  6. P.Etingof, Cherednik and Hecke algebras of varieties with a finite group action, arXiv:math.QA/0406499

    Google Scholar 

  7. P.Etingof, V. Ginzburg, Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, Invent. Math. 147 (2002), 243–348, arXiv:math.AG/0011114

    Google Scholar 

  8. M. Finkelberg, V.Ginzburg, On mirabolic D-modules, arXiv:0803.0578, 2008

    Google Scholar 

  9. W.L.Gan, V. Ginzburg, Almost-commuting variety,\(\mathcal{D}\) -modules, and Cherednik algebras, IMRP 2006, 1–54

    Google Scholar 

  10. V. Ginzburg, I. Gordon, J.T. Stafford, Differential operators and Cherednik algebras, arXiv:0803.3349

    Google Scholar 

  11. I. Gordon, J.T. Stafford, Rational Cherednik algebras and Hilbert schemes, Adv. Math. 198 (2005), 222–274

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Kashiwara, Representation theory and D-modules on flag varieties, Astérisque 173–174 (1989), 55–110

    MathSciNet  Google Scholar 

  13. G.Laumon, Correspondance de Langlands géométrique pour les corps de fonctions, Duke Math. J. 54, (1987), 309–359

    Article  MathSciNet  MATH  Google Scholar 

  14. G.Laumon, Un analogue global du cone nilpotent. Duke Math. J. 57 (1988), 647–671

    Google Scholar 

  15. G.Lusztig, Character sheaves IV, Adv. Math. 59 (1986), 1–63

    Article  MathSciNet  MATH  Google Scholar 

  16. P.Magyar, J.Weyman, A.Zelevinsky, Multiple Flag Varieties of Finite Type, Adv. Math. 141 (1999), 97–118

    Article  MathSciNet  MATH  Google Scholar 

  17. E.M.Opdam, Lecture Notes on Dunkl Operators for Real and Complex Reflection Groups, Math. Soc. Jpn. Memoirs 8 (2000)

    Google Scholar 

  18. V. Ostrik, A remark on cuspidal local systems. Adv. Math. 192 (2005), 218–224

    Google Scholar 

  19. T.Suzuki, Rational and trigonometric degeneration of the double affine Hecke algebra of type A, Int. Math. Res. Not. 2005(37), 2249–2262

    Google Scholar 

  20. R.Travkin, Mirabolic Robinson-Shensted-Knuth correspondence,arXiv:0802. 1651

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Finkelberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Finkelberg, M., Ginzburg, V. (2010). Cherednik Algebras for Algebraic Curves. In: Gyoja, A., Nakajima, H., Shinoda, Ki., Shoji, T., Tanisaki, T. (eds) Representation Theory of Algebraic Groups and Quantum Groups. Progress in Mathematics, vol 284. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4697-4_6

Download citation

Publish with us

Policies and ethics